ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 1.2
Committed: Sat Apr 15 12:23:22 1989 UTC (35 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.1: +15 -7 lines
Log Message:
repaired and improved ambient calculation

File Contents

# Content
1 /* Copyright (c) 1986 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 */
15
16 #include "ray.h"
17
18 #include "source.h"
19
20 #include "otypes.h"
21
22 /*
23 * This routine uses portions of the reflection
24 * model described by Cook and Torrance.
25 * The computation of specular components has been simplified by
26 * numerous approximations and ommisions to improve speed.
27 * We orient the surface towards the incoming ray, so a single
28 * surface can be used to represent an infinitely thin object.
29 *
30 * Arguments for MAT_PLASTIC and MAT_METAL are:
31 * red grn blu specular-frac. facet-slope
32 *
33 * Arguments for MAT_TRANS are:
34 * red grn blu rspec rough trans tspec
35 */
36
37 #define BSPEC(m) (6.0) /* specularity parameter b */
38
39
40 m_normal(m, r) /* color a ray which hit something normal */
41 register OBJREC *m;
42 register RAY *r;
43 {
44 double exp();
45 COLOR mcolor; /* color of this material */
46 COLOR scolor; /* color of specular component */
47 FVECT vrefl; /* vector in direction of reflected ray */
48 double alpha2; /* roughness squared times 2 */
49 RAY lr; /* ray to illumination source */
50 double rdiff, rspec; /* reflected specular, diffuse */
51 double trans; /* transmissivity */
52 double tdiff, tspec; /* transmitted specular, diffuse */
53 FVECT pnorm; /* perturbed surface normal */
54 double pdot; /* perturbed dot product */
55 double ldot;
56 double omega;
57 double dtmp;
58 COLOR ctmp;
59 register int i;
60
61 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
62 objerror(m, USER, "bad # arguments");
63 /* easy shadow test */
64 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
65 return;
66 /* get material color */
67 setcolor(mcolor, m->oargs.farg[0],
68 m->oargs.farg[1],
69 m->oargs.farg[2]);
70 /* get roughness */
71 alpha2 = m->oargs.farg[4];
72 alpha2 *= 2.0 * alpha2;
73 /* reorient if necessary */
74 if (r->rod < 0.0)
75 flipsurface(r);
76 /* get modifiers */
77 raytexture(r, m->omod);
78 pdot = raynormal(pnorm, r); /* perturb normal */
79 multcolor(mcolor, r->pcol); /* modify material color */
80 /* get specular component */
81 rspec = m->oargs.farg[3];
82
83 if (rspec > FTINY) { /* has specular component */
84 /* compute specular color */
85 if (m->otype == MAT_METAL)
86 copycolor(scolor, mcolor);
87 else
88 setcolor(scolor, 1.0, 1.0, 1.0);
89 scalecolor(scolor, rspec);
90 /* improved model */
91 dtmp = exp(-BSPEC(m)*pdot);
92 for (i = 0; i < 3; i++)
93 colval(scolor,i) += (1.0-colval(scolor,i))*dtmp;
94 rspec += (1.0-rspec)*dtmp;
95 /* compute reflected ray */
96 for (i = 0; i < 3; i++)
97 vrefl[i] = r->rdir[i] + 2.0*pdot*pnorm[i];
98
99 if (alpha2 <= FTINY && !(r->crtype & SHADOW))
100 if (rayorigin(&lr, r, REFLECTED, rspec) == 0) {
101 VCOPY(lr.rdir, vrefl);
102 rayvalue(&lr);
103 multcolor(lr.rcol, scolor);
104 addcolor(r->rcol, lr.rcol);
105 }
106 }
107
108 if (m->otype == MAT_TRANS) {
109 trans = m->oargs.farg[5]*(1.0 - rspec);
110 tspec = trans * m->oargs.farg[6];
111 tdiff = trans - tspec;
112 } else
113 tdiff = tspec = trans = 0.0;
114 /* transmitted ray */
115 if (tspec > FTINY && alpha2 <= FTINY)
116 if (rayorigin(&lr, r, TRANS, tspec) == 0) {
117 VCOPY(lr.rdir, r->rdir);
118 rayvalue(&lr);
119 scalecolor(lr.rcol, tspec);
120 addcolor(r->rcol, lr.rcol);
121 }
122 if (r->crtype & SHADOW) /* the rest is shadow */
123 return;
124 /* diffuse reflection */
125 rdiff = 1.0 - trans - rspec;
126
127 if (rdiff <= FTINY && tdiff <= FTINY && alpha2 <= FTINY)
128 return; /* purely specular */
129
130 if (rdiff > FTINY) { /* ambient from this side */
131 ambient(ctmp, r);
132 if (alpha2 <= FTINY)
133 scalecolor(ctmp, rdiff);
134 else
135 scalecolor(ctmp, 1.0-trans);
136 multcolor(ctmp, mcolor); /* modified by material color */
137 addcolor(r->rcol, ctmp); /* add to returned color */
138 }
139 if (tdiff > FTINY) { /* ambient from other side */
140 flipsurface(r);
141 ambient(ctmp, r);
142 if (alpha2 <= FTINY)
143 scalecolor(ctmp, tdiff);
144 else
145 scalecolor(ctmp, trans);
146 multcolor(ctmp, mcolor);
147 addcolor(r->rcol, ctmp);
148 flipsurface(r);
149 }
150
151 for (i = 0; i < nsources; i++) { /* add specular and diffuse */
152
153 if ((omega = srcray(&lr, r, i)) == 0.0)
154 continue; /* bad source */
155
156 ldot = DOT(pnorm, lr.rdir);
157
158 if (ldot < 0.0 ? trans <= FTINY : trans >= 1.0-FTINY)
159 continue; /* wrong side */
160
161 rayvalue(&lr); /* compute light ray value */
162
163 if (intens(lr.rcol) <= FTINY)
164 continue; /* didn't hit light source */
165
166 if (ldot > FTINY && rdiff > FTINY) {
167 /*
168 * Compute and add diffuse component to returned color.
169 * The diffuse component will always be modified by the
170 * color of the material.
171 */
172 copycolor(ctmp, lr.rcol);
173 dtmp = ldot * omega * rdiff / PI;
174 scalecolor(ctmp, dtmp);
175 multcolor(ctmp, mcolor);
176 addcolor(r->rcol, ctmp);
177 }
178 if (ldot > FTINY && rspec > FTINY && alpha2 > FTINY) {
179 /*
180 * Compute specular reflection coefficient using
181 * gaussian distribution model.
182 */
183 /* roughness + source */
184 dtmp = alpha2 + omega/(2.0*PI);
185 /* gaussian */
186 dtmp = exp((DOT(vrefl,lr.rdir)-1.)/dtmp)/(2.*PI)/dtmp;
187 /* worth using? */
188 if (dtmp > FTINY) {
189 copycolor(ctmp, lr.rcol);
190 dtmp *= omega;
191 scalecolor(ctmp, dtmp);
192 multcolor(ctmp, scolor);
193 addcolor(r->rcol, ctmp);
194 }
195 }
196 if (ldot < -FTINY && tdiff > FTINY) {
197 /*
198 * Compute diffuse transmission.
199 */
200 copycolor(ctmp, lr.rcol);
201 dtmp = -ldot * omega * tdiff / PI;
202 scalecolor(ctmp, dtmp);
203 multcolor(ctmp, mcolor);
204 addcolor(r->rcol, ctmp);
205 }
206 if (ldot < -FTINY && tspec > FTINY && alpha2 > FTINY) {
207 /*
208 * Compute specular transmission.
209 */
210 /* roughness + source */
211 dtmp = alpha2 + omega/(2.0*PI);
212 /* gaussian */
213 dtmp = exp((DOT(r->rdir,lr.rdir)-1.)/dtmp)/(2.*PI)/dtmp;
214 /* worth using? */
215 if (dtmp > FTINY) {
216 copycolor(ctmp, lr.rcol);
217 dtmp *= tspec * omega;
218 scalecolor(ctmp, dtmp);
219 addcolor(r->rcol, ctmp);
220 }
221 }
222 }
223 }