| 14 |
|
#include "copyright.h" |
| 15 |
|
|
| 16 |
|
#include "ray.h" |
| 17 |
< |
|
| 17 |
> |
#include "ambient.h" |
| 18 |
> |
#include "source.h" |
| 19 |
|
#include "otypes.h" |
| 20 |
< |
|
| 20 |
> |
#include "rtotypes.h" |
| 21 |
|
#include "random.h" |
| 22 |
|
|
| 23 |
|
#ifndef MAXITER |
| 24 |
|
#define MAXITER 10 /* maximum # specular ray attempts */ |
| 25 |
|
#endif |
| 26 |
|
/* estimate of Fresnel function */ |
| 27 |
< |
#define FRESNE(ci) (exp(-6.0*(ci)) - 0.00247875217) |
| 27 |
> |
#define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916) |
| 28 |
> |
#define FRESTHRESH 0.017999 /* minimum specularity for approx. */ |
| 29 |
|
|
| 28 |
– |
static void gaussamp(); |
| 30 |
|
|
| 31 |
|
/* |
| 32 |
|
* This routine implements the isotropic Gaussian |
| 65 |
|
double pdot; /* perturbed dot product */ |
| 66 |
|
} NORMDAT; /* normal material data */ |
| 67 |
|
|
| 68 |
+ |
static srcdirf_t dirnorm; |
| 69 |
+ |
static void gaussamp(RAY *r, NORMDAT *np); |
| 70 |
|
|
| 71 |
+ |
|
| 72 |
|
static void |
| 73 |
< |
dirnorm(cval, np, ldir, omega) /* compute source contribution */ |
| 74 |
< |
COLOR cval; /* returned coefficient */ |
| 75 |
< |
register NORMDAT *np; /* material data */ |
| 76 |
< |
FVECT ldir; /* light source direction */ |
| 77 |
< |
double omega; /* light source size */ |
| 73 |
> |
dirnorm( /* compute source contribution */ |
| 74 |
> |
COLOR cval, /* returned coefficient */ |
| 75 |
> |
void *nnp, /* material data */ |
| 76 |
> |
FVECT ldir, /* light source direction */ |
| 77 |
> |
double omega /* light source size */ |
| 78 |
> |
) |
| 79 |
|
{ |
| 80 |
+ |
register NORMDAT *np = nnp; |
| 81 |
|
double ldot; |
| 82 |
< |
double ldiff; |
| 82 |
> |
double lrdiff, ltdiff; |
| 83 |
|
double dtmp, d2; |
| 84 |
|
FVECT vtmp; |
| 85 |
|
COLOR ctmp; |
| 92 |
|
return; /* wrong side */ |
| 93 |
|
|
| 94 |
|
/* Fresnel estimate */ |
| 95 |
< |
ldiff = np->rdiff; |
| 96 |
< |
if (np->specfl & SP_PURE && (np->rspec > FTINY & ldiff > FTINY)) |
| 97 |
< |
ldiff *= 1. - FRESNE(fabs(ldot)); |
| 95 |
> |
lrdiff = np->rdiff; |
| 96 |
> |
ltdiff = np->tdiff; |
| 97 |
> |
if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH && |
| 98 |
> |
(lrdiff > FTINY) | (ltdiff > FTINY)) { |
| 99 |
> |
dtmp = 1. - FRESNE(fabs(ldot)); |
| 100 |
> |
lrdiff *= dtmp; |
| 101 |
> |
ltdiff *= dtmp; |
| 102 |
> |
} |
| 103 |
|
|
| 104 |
< |
if (ldot > FTINY && ldiff > FTINY) { |
| 104 |
> |
if (ldot > FTINY && lrdiff > FTINY) { |
| 105 |
|
/* |
| 106 |
|
* Compute and add diffuse reflected component to returned |
| 107 |
|
* color. The diffuse reflected component will always be |
| 108 |
|
* modified by the color of the material. |
| 109 |
|
*/ |
| 110 |
|
copycolor(ctmp, np->mcolor); |
| 111 |
< |
dtmp = ldot * omega * ldiff / PI; |
| 111 |
> |
dtmp = ldot * omega * lrdiff * (1.0/PI); |
| 112 |
|
scalecolor(ctmp, dtmp); |
| 113 |
|
addcolor(cval, ctmp); |
| 114 |
|
} |
| 121 |
|
dtmp = np->alpha2; |
| 122 |
|
/* + source if flat */ |
| 123 |
|
if (np->specfl & SP_FLAT) |
| 124 |
< |
dtmp += omega/(4.0*PI); |
| 124 |
> |
dtmp += omega * (0.25/PI); |
| 125 |
|
/* half vector */ |
| 126 |
|
vtmp[0] = ldir[0] - np->rp->rdir[0]; |
| 127 |
|
vtmp[1] = ldir[1] - np->rp->rdir[1]; |
| 130 |
|
d2 *= d2; |
| 131 |
|
d2 = (DOT(vtmp,vtmp) - d2) / d2; |
| 132 |
|
/* gaussian */ |
| 133 |
< |
dtmp = exp(-d2/dtmp)/(4.*PI*dtmp); |
| 133 |
> |
dtmp = exp(-d2/dtmp)/(4.*PI * np->pdot * dtmp); |
| 134 |
|
/* worth using? */ |
| 135 |
|
if (dtmp > FTINY) { |
| 136 |
|
copycolor(ctmp, np->scolor); |
| 137 |
< |
dtmp *= omega * sqrt(ldot/np->pdot); |
| 137 |
> |
dtmp *= omega; |
| 138 |
|
scalecolor(ctmp, dtmp); |
| 139 |
|
addcolor(cval, ctmp); |
| 140 |
|
} |
| 141 |
|
} |
| 142 |
< |
if (ldot < -FTINY && np->tdiff > FTINY) { |
| 142 |
> |
if (ldot < -FTINY && ltdiff > FTINY) { |
| 143 |
|
/* |
| 144 |
|
* Compute diffuse transmission. |
| 145 |
|
*/ |
| 146 |
|
copycolor(ctmp, np->mcolor); |
| 147 |
< |
dtmp = -ldot * omega * np->tdiff / PI; |
| 147 |
> |
dtmp = -ldot * omega * ltdiff * (1.0/PI); |
| 148 |
|
scalecolor(ctmp, dtmp); |
| 149 |
|
addcolor(cval, ctmp); |
| 150 |
|
} |
| 154 |
|
* is always modified by material color. |
| 155 |
|
*/ |
| 156 |
|
/* roughness + source */ |
| 157 |
< |
dtmp = np->alpha2 + omega/PI; |
| 157 |
> |
dtmp = np->alpha2 + omega*(1.0/PI); |
| 158 |
|
/* gaussian */ |
| 159 |
< |
dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); |
| 159 |
> |
dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp) / |
| 160 |
> |
(PI*np->pdot*dtmp); |
| 161 |
|
/* worth using? */ |
| 162 |
|
if (dtmp > FTINY) { |
| 163 |
|
copycolor(ctmp, np->mcolor); |
| 164 |
< |
dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot); |
| 164 |
> |
dtmp *= np->tspec * omega; |
| 165 |
|
scalecolor(ctmp, dtmp); |
| 166 |
|
addcolor(cval, ctmp); |
| 167 |
|
} |
| 169 |
|
} |
| 170 |
|
|
| 171 |
|
|
| 172 |
< |
int |
| 173 |
< |
m_normal(m, r) /* color a ray that hit something normal */ |
| 174 |
< |
register OBJREC *m; |
| 175 |
< |
register RAY *r; |
| 172 |
> |
extern int |
| 173 |
> |
m_normal( /* color a ray that hit something normal */ |
| 174 |
> |
register OBJREC *m, |
| 175 |
> |
register RAY *r |
| 176 |
> |
) |
| 177 |
|
{ |
| 178 |
|
NORMDAT nd; |
| 179 |
|
double fest; |
| 211 |
|
if ((nd.alpha2 *= nd.alpha2) <= FTINY) |
| 212 |
|
nd.specfl |= SP_PURE; |
| 213 |
|
|
| 214 |
< |
if (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) { |
| 214 |
> |
if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) { |
| 215 |
|
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
| 216 |
|
} else { |
| 217 |
|
VCOPY(nd.pnorm, r->ron); |
| 218 |
|
nd.pdot = r->rod; |
| 206 |
– |
if (r->ro != NULL && isflat(r->ro->otype)) |
| 207 |
– |
nd.specfl |= SP_FLAT; |
| 219 |
|
} |
| 220 |
+ |
if (r->ro != NULL && isflat(r->ro->otype)) |
| 221 |
+ |
nd.specfl |= SP_FLAT; |
| 222 |
|
if (nd.pdot < .001) |
| 223 |
|
nd.pdot = .001; /* non-zero for dirnorm() */ |
| 224 |
|
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
| 226 |
|
mirdist = transdist = r->rot; |
| 227 |
|
nd.rspec = m->oargs.farg[3]; |
| 228 |
|
/* compute Fresnel approx. */ |
| 229 |
< |
if (nd.specfl & SP_PURE && nd.rspec > FTINY) { |
| 229 |
> |
if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) { |
| 230 |
|
fest = FRESNE(r->rod); |
| 231 |
|
nd.rspec += fest*(1. - nd.rspec); |
| 232 |
|
} else |
| 259 |
|
/* transmitted ray */ |
| 260 |
|
if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) { |
| 261 |
|
RAY lr; |
| 262 |
< |
if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { |
| 262 |
> |
copycolor(lr.rcoef, nd.mcolor); /* modified by color */ |
| 263 |
> |
scalecolor(lr.rcoef, nd.tspec); |
| 264 |
> |
if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) { |
| 265 |
|
VCOPY(lr.rdir, nd.prdir); |
| 266 |
|
rayvalue(&lr); |
| 267 |
< |
scalecolor(lr.rcol, nd.tspec); |
| 253 |
< |
multcolor(lr.rcol, nd.mcolor); /* modified by color */ |
| 267 |
> |
multcolor(lr.rcol, lr.rcoef); |
| 268 |
|
addcolor(r->rcol, lr.rcol); |
| 269 |
|
transtest *= bright(lr.rcol); |
| 270 |
|
transdist = r->rot + lr.rt; |
| 304 |
|
/* reflected ray */ |
| 305 |
|
if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) { |
| 306 |
|
RAY lr; |
| 307 |
< |
if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { |
| 307 |
> |
if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) { |
| 308 |
|
VCOPY(lr.rdir, nd.vrefl); |
| 309 |
|
rayvalue(&lr); |
| 310 |
< |
multcolor(lr.rcol, nd.scolor); |
| 310 |
> |
multcolor(lr.rcol, lr.rcoef); |
| 311 |
|
addcolor(r->rcol, lr.rcol); |
| 312 |
|
if (!hastexture && nd.specfl & SP_FLAT) { |
| 313 |
|
mirtest = 2.*bright(lr.rcol); |
| 325 |
|
gaussamp(r, &nd); /* checks *BLT flags */ |
| 326 |
|
|
| 327 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
| 328 |
< |
ambient(ctmp, r, hastexture?nd.pnorm:r->ron); |
| 328 |
> |
copycolor(ctmp, nd.mcolor); /* modified by material color */ |
| 329 |
|
if (nd.specfl & SP_RBLT) |
| 330 |
|
scalecolor(ctmp, 1.0-nd.trans); |
| 331 |
|
else |
| 332 |
|
scalecolor(ctmp, nd.rdiff); |
| 333 |
< |
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
| 333 |
> |
multambient(ctmp, r, hastexture ? nd.pnorm : r->ron); |
| 334 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
| 335 |
|
} |
| 336 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
| 337 |
+ |
copycolor(ctmp, nd.mcolor); /* modified by color */ |
| 338 |
+ |
if (nd.specfl & SP_TBLT) |
| 339 |
+ |
scalecolor(ctmp, nd.trans); |
| 340 |
+ |
else |
| 341 |
+ |
scalecolor(ctmp, nd.tdiff); |
| 342 |
|
flipsurface(r); |
| 343 |
|
if (hastexture) { |
| 344 |
|
FVECT bnorm; |
| 345 |
|
bnorm[0] = -nd.pnorm[0]; |
| 346 |
|
bnorm[1] = -nd.pnorm[1]; |
| 347 |
|
bnorm[2] = -nd.pnorm[2]; |
| 348 |
< |
ambient(ctmp, r, bnorm); |
| 348 |
> |
multambient(ctmp, r, bnorm); |
| 349 |
|
} else |
| 350 |
< |
ambient(ctmp, r, r->ron); |
| 332 |
< |
if (nd.specfl & SP_TBLT) |
| 333 |
< |
scalecolor(ctmp, nd.trans); |
| 334 |
< |
else |
| 335 |
< |
scalecolor(ctmp, nd.tdiff); |
| 336 |
< |
multcolor(ctmp, nd.mcolor); /* modified by color */ |
| 350 |
> |
multambient(ctmp, r, r->ron); |
| 351 |
|
addcolor(r->rcol, ctmp); |
| 352 |
|
flipsurface(r); |
| 353 |
|
} |
| 365 |
|
|
| 366 |
|
|
| 367 |
|
static void |
| 368 |
< |
gaussamp(r, np) /* sample gaussian specular */ |
| 369 |
< |
RAY *r; |
| 370 |
< |
register NORMDAT *np; |
| 368 |
> |
gaussamp( /* sample gaussian specular */ |
| 369 |
> |
RAY *r, |
| 370 |
> |
register NORMDAT *np |
| 371 |
> |
) |
| 372 |
|
{ |
| 373 |
|
RAY sr; |
| 374 |
|
FVECT u, v, h; |
| 391 |
|
fcross(v, np->pnorm, u); |
| 392 |
|
/* compute reflection */ |
| 393 |
|
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
| 394 |
< |
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
| 394 |
> |
rayorigin(&sr, SPECULAR, r, np->scolor) == 0) { |
| 395 |
|
dimlist[ndims++] = (int)np->mp; |
| 396 |
|
for (niter = 0; niter < MAXITER; niter++) { |
| 397 |
|
if (niter) |
| 414 |
|
sr.rdir[i] = r->rdir[i] + d*h[i]; |
| 415 |
|
if (DOT(sr.rdir, r->ron) > FTINY) { |
| 416 |
|
rayvalue(&sr); |
| 417 |
< |
multcolor(sr.rcol, np->scolor); |
| 417 |
> |
multcolor(sr.rcol, sr.rcoef); |
| 418 |
|
addcolor(r->rcol, sr.rcol); |
| 419 |
|
break; |
| 420 |
|
} |
| 422 |
|
ndims--; |
| 423 |
|
} |
| 424 |
|
/* compute transmission */ |
| 425 |
+ |
copycolor(sr.rcoef, np->mcolor); /* modified by color */ |
| 426 |
+ |
scalecolor(sr.rcoef, np->tspec); |
| 427 |
|
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
| 428 |
< |
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
| 428 |
> |
rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) { |
| 429 |
|
dimlist[ndims++] = (int)np->mp; |
| 430 |
|
for (niter = 0; niter < MAXITER; niter++) { |
| 431 |
|
if (niter) |
| 446 |
|
if (DOT(sr.rdir, r->ron) < -FTINY) { |
| 447 |
|
normalize(sr.rdir); /* OK, normalize */ |
| 448 |
|
rayvalue(&sr); |
| 449 |
< |
scalecolor(sr.rcol, np->tspec); |
| 433 |
< |
multcolor(sr.rcol, np->mcolor); /* modified */ |
| 449 |
> |
multcolor(sr.rcol, sr.rcoef); |
| 450 |
|
addcolor(r->rcol, sr.rcol); |
| 451 |
|
break; |
| 452 |
|
} |