--- ray/src/rt/normal.c 1992/02/21 14:53:16 2.11 +++ ray/src/rt/normal.c 1993/05/27 15:28:03 2.25 @@ -23,11 +23,11 @@ static char SCCSid[] = "$SunId$ LBL"; extern double specthresh; /* specular sampling threshold */ extern double specjitter; /* specular sampling jitter */ +static gaussamp(); + /* - * This routine uses portions of the reflection - * model described by Cook and Torrance. - * The computation of specular components has been simplified by - * numerous approximations and ommisions to improve speed. + * This routine implements the isotropic Gaussian + * model described by Ward in Siggraph `92 article. * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * @@ -38,8 +38,6 @@ extern double specjitter; /* specular sampling jitte * red grn blu rspec rough trans tspec */ -#define BSPEC(m) (6.0) /* specularity parameter b */ - /* specularity flags */ #define SP_REFL 01 /* has reflected specular component */ #define SP_TRAN 02 /* has transmitted specular */ @@ -50,6 +48,7 @@ extern double specjitter; /* specular sampling jitte typedef struct { OBJREC *mp; /* material pointer */ + RAY *rp; /* ray pointer */ short specfl; /* specularity flags, defined above */ COLOR mcolor; /* color of this material */ COLOR scolor; /* color of specular component */ @@ -71,8 +70,8 @@ FVECT ldir; /* light source direction */ double omega; /* light source size */ { double ldot; - double dtmp; - int i; + double dtmp, d2; + FVECT vtmp; COLOR ctmp; setcolor(cval, 0.0, 0.0, 0.0); @@ -99,16 +98,23 @@ double omega; /* light source size */ * gaussian distribution model. */ /* roughness */ - dtmp = 2.0*np->alpha2; + dtmp = np->alpha2; /* + source if flat */ if (np->specfl & SP_FLAT) - dtmp += omega/(2.0*PI); + dtmp += omega/(4.0*PI); + /* half vector */ + vtmp[0] = ldir[0] - np->rp->rdir[0]; + vtmp[1] = ldir[1] - np->rp->rdir[1]; + vtmp[2] = ldir[2] - np->rp->rdir[2]; + d2 = DOT(vtmp, np->pnorm); + d2 *= d2; + d2 = (DOT(vtmp,vtmp) - d2) / d2; /* gaussian */ - dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp; + dtmp = exp(-d2/dtmp)/(4.*PI*dtmp); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->scolor); - dtmp *= omega / np->pdot; + dtmp *= omega * sqrt(ldot/np->pdot); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } @@ -128,13 +134,13 @@ double omega; /* light source size */ * is always modified by material color. */ /* roughness + source */ - dtmp = np->alpha2/2.0 + omega/(2.0*PI); + dtmp = np->alpha2 + omega/PI; /* gaussian */ - dtmp = exp((DOT(np->prdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp; + dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->mcolor); - dtmp *= np->tspec * omega / np->pdot; + dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } @@ -148,7 +154,6 @@ register RAY *r; { NORMDAT nd; double transtest, transdist; - double dtmp; COLOR ctmp; register int i; /* easy shadow test */ @@ -158,6 +163,7 @@ register RAY *r; if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) objerror(m, USER, "bad number of arguments"); nd.mp = m; + nd.rp = r; /* get material color */ setcolor(nd.mcolor, m->oargs.farg[0], m->oargs.farg[1], @@ -186,15 +192,8 @@ register RAY *r; else setcolor(nd.scolor, 1.0, 1.0, 1.0); scalecolor(nd.scolor, nd.rspec); - /* improved model */ - dtmp = exp(-BSPEC(m)*nd.pdot); - for (i = 0; i < 3; i++) - colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; - nd.rspec += (1.0-nd.rspec)*dtmp; /* check threshold */ - if (specthresh > FTINY && - ((specthresh >= 1.-FTINY || - specthresh + (.05 - .1*frandom()) > nd.rspec))) + if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY) nd.specfl |= SP_RBLT; /* compute reflected ray */ for (i = 0; i < 3; i++) @@ -221,10 +220,8 @@ register RAY *r; if (nd.tspec > FTINY) { nd.specfl |= SP_TRAN; /* check threshold */ - if (specthresh > FTINY && - ((specthresh >= 1.-FTINY || - specthresh + - (.05 - .1*frandom()) > nd.tspec))) + if (!(nd.specfl & SP_PURE) && + specthresh >= nd.tspec-FTINY) nd.specfl |= SP_TBLT; if (r->crtype & SHADOW || DOT(r->pert,r->pert) <= FTINY*FTINY) { @@ -232,8 +229,7 @@ register RAY *r; transtest = 2; } else { for (i = 0; i < 3; i++) /* perturb */ - nd.prdir[i] = r->rdir[i] - - 0.5*r->pert[i]; + nd.prdir[i] = r->rdir[i] - r->pert[i]; if (DOT(nd.prdir, r->ron) < -FTINY) normalize(nd.prdir); /* OK */ else @@ -265,7 +261,8 @@ register RAY *r; if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) return; /* 100% pure specular */ - if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING) + if (r->ro != NULL && (r->ro->otype == OBJ_FACE || + r->ro->otype == OBJ_RING)) nd.specfl |= SP_FLAT; if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE)) @@ -309,6 +306,10 @@ register NORMDAT *np; double rv[2]; double d, sinp, cosp; register int i; + /* quick test */ + if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && + (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) + return; /* set up sample coordinates */ v[0] = v[1] = v[2] = 0.0; for (i = 0; i < 3; i++) @@ -357,7 +358,7 @@ register NORMDAT *np; if (rv[1] <= FTINY) d = 1.0; else - d = sqrt( np->alpha2/4.0 * -log(rv[1]) ); + d = sqrt( -log(rv[1]) * np->alpha2 ); for (i = 0; i < 3; i++) sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); if (DOT(sr.rdir, r->ron) < -FTINY)