| 1 | #ifndef lint | 
| 2 | static const char RCSid[] = "$Id: normal.c,v 2.76 2018/01/10 04:08:50 greg Exp $"; | 
| 3 | #endif | 
| 4 | /* | 
| 5 | *  normal.c - shading function for normal materials. | 
| 6 | * | 
| 7 | *     8/19/85 | 
| 8 | *     12/19/85 - added stuff for metals. | 
| 9 | *     6/26/87 - improved specular model. | 
| 10 | *     9/28/87 - added model for translucent materials. | 
| 11 | *     Later changes described in delta comments. | 
| 12 | */ | 
| 13 |  | 
| 14 | #include "copyright.h" | 
| 15 |  | 
| 16 | #include  "ray.h" | 
| 17 | #include  "ambient.h" | 
| 18 | #include  "source.h" | 
| 19 | #include  "otypes.h" | 
| 20 | #include  "rtotypes.h" | 
| 21 | #include  "random.h" | 
| 22 | #include  "pmapmat.h" | 
| 23 |  | 
| 24 | #ifndef  MAXITER | 
| 25 | #define  MAXITER        10              /* maximum # specular ray attempts */ | 
| 26 | #endif | 
| 27 | /* estimate of Fresnel function */ | 
| 28 | #define  FRESNE(ci)     (exp(-5.85*(ci)) - 0.00287989916) | 
| 29 | #define  FRESTHRESH     0.017999        /* minimum specularity for approx. */ | 
| 30 |  | 
| 31 |  | 
| 32 | /* | 
| 33 | *      This routine implements the isotropic Gaussian | 
| 34 | *  model described by Ward in Siggraph `92 article. | 
| 35 | *      We orient the surface towards the incoming ray, so a single | 
| 36 | *  surface can be used to represent an infinitely thin object. | 
| 37 | * | 
| 38 | *  Arguments for MAT_PLASTIC and MAT_METAL are: | 
| 39 | *      red     grn     blu     specular-frac.  facet-slope | 
| 40 | * | 
| 41 | *  Arguments for MAT_TRANS are: | 
| 42 | *      red     grn     blu     rspec   rough   trans   tspec | 
| 43 | */ | 
| 44 |  | 
| 45 | /* specularity flags */ | 
| 46 | #define  SP_REFL        01              /* has reflected specular component */ | 
| 47 | #define  SP_TRAN        02              /* has transmitted specular */ | 
| 48 | #define  SP_PURE        04              /* purely specular (zero roughness) */ | 
| 49 | #define  SP_FLAT        010             /* flat reflecting surface */ | 
| 50 | #define  SP_RBLT        020             /* reflection below sample threshold */ | 
| 51 | #define  SP_TBLT        040             /* transmission below threshold */ | 
| 52 |  | 
| 53 | typedef struct { | 
| 54 | OBJREC  *mp;            /* material pointer */ | 
| 55 | RAY  *rp;               /* ray pointer */ | 
| 56 | short  specfl;          /* specularity flags, defined above */ | 
| 57 | COLOR  mcolor;          /* color of this material */ | 
| 58 | COLOR  scolor;          /* color of specular component */ | 
| 59 | FVECT  vrefl;           /* vector in direction of reflected ray */ | 
| 60 | FVECT  prdir;           /* vector in transmitted direction */ | 
| 61 | double  alpha2;         /* roughness squared */ | 
| 62 | double  rdiff, rspec;   /* reflected specular, diffuse */ | 
| 63 | double  trans;          /* transmissivity */ | 
| 64 | double  tdiff, tspec;   /* transmitted specular, diffuse */ | 
| 65 | FVECT  pnorm;           /* perturbed surface normal */ | 
| 66 | double  pdot;           /* perturbed dot product */ | 
| 67 | }  NORMDAT;             /* normal material data */ | 
| 68 |  | 
| 69 | static void gaussamp(NORMDAT  *np); | 
| 70 |  | 
| 71 |  | 
| 72 | static void | 
| 73 | dirnorm(                /* compute source contribution */ | 
| 74 | COLOR  cval,                    /* returned coefficient */ | 
| 75 | void  *nnp,                     /* material data */ | 
| 76 | FVECT  ldir,                    /* light source direction */ | 
| 77 | double  omega                   /* light source size */ | 
| 78 | ) | 
| 79 | { | 
| 80 | NORMDAT *np = nnp; | 
| 81 | double  ldot; | 
| 82 | double  lrdiff, ltdiff; | 
| 83 | double  dtmp, d2, d3, d4; | 
| 84 | FVECT  vtmp; | 
| 85 | COLOR  ctmp; | 
| 86 |  | 
| 87 | setcolor(cval, 0.0, 0.0, 0.0); | 
| 88 |  | 
| 89 | ldot = DOT(np->pnorm, ldir); | 
| 90 |  | 
| 91 | if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) | 
| 92 | return;         /* wrong side */ | 
| 93 |  | 
| 94 | /* Fresnel estimate */ | 
| 95 | lrdiff = np->rdiff; | 
| 96 | ltdiff = np->tdiff; | 
| 97 | if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH && | 
| 98 | (lrdiff > FTINY) | (ltdiff > FTINY)) { | 
| 99 | dtmp = 1. - FRESNE(fabs(ldot)); | 
| 100 | lrdiff *= dtmp; | 
| 101 | ltdiff *= dtmp; | 
| 102 | } | 
| 103 |  | 
| 104 | if (ldot > FTINY && lrdiff > FTINY) { | 
| 105 | /* | 
| 106 | *  Compute and add diffuse reflected component to returned | 
| 107 | *  color.  The diffuse reflected component will always be | 
| 108 | *  modified by the color of the material. | 
| 109 | */ | 
| 110 | copycolor(ctmp, np->mcolor); | 
| 111 | dtmp = ldot * omega * lrdiff * (1.0/PI); | 
| 112 | scalecolor(ctmp, dtmp); | 
| 113 | addcolor(cval, ctmp); | 
| 114 | } | 
| 115 |  | 
| 116 | if (ldot < -FTINY && ltdiff > FTINY) { | 
| 117 | /* | 
| 118 | *  Compute diffuse transmission. | 
| 119 | */ | 
| 120 | copycolor(ctmp, np->mcolor); | 
| 121 | dtmp = -ldot * omega * ltdiff * (1.0/PI); | 
| 122 | scalecolor(ctmp, dtmp); | 
| 123 | addcolor(cval, ctmp); | 
| 124 | } | 
| 125 |  | 
| 126 | if (ambRayInPmap(np->rp)) | 
| 127 | return;         /* specular already in photon map */ | 
| 128 |  | 
| 129 | if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) { | 
| 130 | /* | 
| 131 | *  Compute specular reflection coefficient using | 
| 132 | *  Gaussian distribution model. | 
| 133 | */ | 
| 134 | /* roughness */ | 
| 135 | dtmp = np->alpha2; | 
| 136 | /* + source if flat */ | 
| 137 | if (np->specfl & SP_FLAT) | 
| 138 | dtmp += omega * (0.25/PI); | 
| 139 | /* half vector */ | 
| 140 | VSUB(vtmp, ldir, np->rp->rdir); | 
| 141 | d2 = DOT(vtmp, np->pnorm); | 
| 142 | d2 *= d2; | 
| 143 | d3 = DOT(vtmp,vtmp); | 
| 144 | d4 = (d3 - d2) / d2; | 
| 145 | /* new W-G-M-D model */ | 
| 146 | dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp); | 
| 147 | /* worth using? */ | 
| 148 | if (dtmp > FTINY) { | 
| 149 | copycolor(ctmp, np->scolor); | 
| 150 | dtmp *= ldot * omega; | 
| 151 | scalecolor(ctmp, dtmp); | 
| 152 | addcolor(cval, ctmp); | 
| 153 | } | 
| 154 | } | 
| 155 |  | 
| 156 |  | 
| 157 | if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) { | 
| 158 | /* | 
| 159 | *  Compute specular transmission.  Specular transmission | 
| 160 | *  is always modified by material color. | 
| 161 | */ | 
| 162 | /* roughness + source */ | 
| 163 | dtmp = np->alpha2 + omega*(1.0/PI); | 
| 164 | /* Gaussian */ | 
| 165 | dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); | 
| 166 | /* worth using? */ | 
| 167 | if (dtmp > FTINY) { | 
| 168 | copycolor(ctmp, np->mcolor); | 
| 169 | dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot); | 
| 170 | scalecolor(ctmp, dtmp); | 
| 171 | addcolor(cval, ctmp); | 
| 172 | } | 
| 173 | } | 
| 174 | } | 
| 175 |  | 
| 176 |  | 
| 177 | int | 
| 178 | m_normal(                       /* color a ray that hit something normal */ | 
| 179 | OBJREC  *m, | 
| 180 | RAY  *r | 
| 181 | ) | 
| 182 | { | 
| 183 | NORMDAT  nd; | 
| 184 | double  fest; | 
| 185 | int     hastexture; | 
| 186 | double  d; | 
| 187 | COLOR  ctmp; | 
| 188 | int  i; | 
| 189 |  | 
| 190 | /* PMAP: skip transmitted shadow ray if accounted for in photon map */ | 
| 191 | /* No longer needed? | 
| 192 | if (shadowRayInPmap(r) || ambRayInPmap(r)) | 
| 193 | return(1); */ | 
| 194 |  | 
| 195 | /* easy shadow test */ | 
| 196 | if (r->crtype & SHADOW && m->otype != MAT_TRANS) | 
| 197 | return(1); | 
| 198 |  | 
| 199 | if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) | 
| 200 | objerror(m, USER, "bad number of arguments"); | 
| 201 | /* check for back side */ | 
| 202 | if (r->rod < 0.0) { | 
| 203 | if (!backvis) { | 
| 204 | raytrans(r); | 
| 205 | return(1); | 
| 206 | } | 
| 207 | raytexture(r, m->omod); | 
| 208 | flipsurface(r);                 /* reorient if backvis */ | 
| 209 | } else | 
| 210 | raytexture(r, m->omod); | 
| 211 | nd.mp = m; | 
| 212 | nd.rp = r; | 
| 213 | /* get material color */ | 
| 214 | setcolor(nd.mcolor, m->oargs.farg[0], | 
| 215 | m->oargs.farg[1], | 
| 216 | m->oargs.farg[2]); | 
| 217 | /* get roughness */ | 
| 218 | nd.specfl = 0; | 
| 219 | nd.alpha2 = m->oargs.farg[4]; | 
| 220 | if ((nd.alpha2 *= nd.alpha2) <= FTINY) | 
| 221 | nd.specfl |= SP_PURE; | 
| 222 |  | 
| 223 | if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) { | 
| 224 | nd.pdot = raynormal(nd.pnorm, r);       /* perturb normal */ | 
| 225 | } else { | 
| 226 | VCOPY(nd.pnorm, r->ron); | 
| 227 | nd.pdot = r->rod; | 
| 228 | } | 
| 229 | if (r->ro != NULL && isflat(r->ro->otype)) | 
| 230 | nd.specfl |= SP_FLAT; | 
| 231 | if (nd.pdot < .001) | 
| 232 | nd.pdot = .001;                 /* non-zero for dirnorm() */ | 
| 233 | multcolor(nd.mcolor, r->pcol);          /* modify material color */ | 
| 234 | nd.rspec = m->oargs.farg[3]; | 
| 235 | /* compute Fresnel approx. */ | 
| 236 | if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) { | 
| 237 | fest = FRESNE(nd.pdot); | 
| 238 | nd.rspec += fest*(1. - nd.rspec); | 
| 239 | } else | 
| 240 | fest = 0.; | 
| 241 | /* compute transmission */ | 
| 242 | if (m->otype == MAT_TRANS) { | 
| 243 | nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec); | 
| 244 | nd.tspec = nd.trans * m->oargs.farg[6]; | 
| 245 | nd.tdiff = nd.trans - nd.tspec; | 
| 246 | if (nd.tspec > FTINY) { | 
| 247 | nd.specfl |= SP_TRAN; | 
| 248 | /* check threshold */ | 
| 249 | if (!(nd.specfl & SP_PURE) && | 
| 250 | specthresh >= nd.tspec-FTINY) | 
| 251 | nd.specfl |= SP_TBLT; | 
| 252 | if (!hastexture || r->crtype & (SHADOW|AMBIENT)) { | 
| 253 | VCOPY(nd.prdir, r->rdir); | 
| 254 | } else { | 
| 255 | /* perturb */ | 
| 256 | VSUB(nd.prdir, r->rdir, r->pert); | 
| 257 | if (DOT(nd.prdir, r->ron) < -FTINY) | 
| 258 | normalize(nd.prdir);    /* OK */ | 
| 259 | else | 
| 260 | VCOPY(nd.prdir, r->rdir); | 
| 261 | } | 
| 262 | } | 
| 263 | } else | 
| 264 | nd.tdiff = nd.tspec = nd.trans = 0.0; | 
| 265 | /* transmitted ray */ | 
| 266 |  | 
| 267 | if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) { | 
| 268 | RAY  lr; | 
| 269 | copycolor(lr.rcoef, nd.mcolor); /* modified by color */ | 
| 270 | scalecolor(lr.rcoef, nd.tspec); | 
| 271 | if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) { | 
| 272 | VCOPY(lr.rdir, nd.prdir); | 
| 273 | rayvalue(&lr); | 
| 274 | multcolor(lr.rcol, lr.rcoef); | 
| 275 | addcolor(r->rcol, lr.rcol); | 
| 276 | r->rxt = r->rot + raydistance(&lr); | 
| 277 | } | 
| 278 | } | 
| 279 |  | 
| 280 | if (r->crtype & SHADOW)                 /* the rest is shadow */ | 
| 281 | return(1); | 
| 282 | /* get specular reflection */ | 
| 283 | if (nd.rspec > FTINY) { | 
| 284 | nd.specfl |= SP_REFL; | 
| 285 | /* compute specular color */ | 
| 286 | if (m->otype != MAT_METAL) { | 
| 287 | setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec); | 
| 288 | } else if (fest > FTINY) { | 
| 289 | d = m->oargs.farg[3]*(1. - fest); | 
| 290 | for (i = 0; i < 3; i++) | 
| 291 | colval(nd.scolor,i) = fest + | 
| 292 | colval(nd.mcolor,i)*d; | 
| 293 | } else { | 
| 294 | copycolor(nd.scolor, nd.mcolor); | 
| 295 | scalecolor(nd.scolor, nd.rspec); | 
| 296 | } | 
| 297 | /* check threshold */ | 
| 298 | if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY) | 
| 299 | nd.specfl |= SP_RBLT; | 
| 300 | /* compute reflected ray */ | 
| 301 | VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot); | 
| 302 | /* penetration? */ | 
| 303 | if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY) | 
| 304 | VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod); | 
| 305 | checknorm(nd.vrefl); | 
| 306 | } | 
| 307 | /* reflected ray */ | 
| 308 | if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) { | 
| 309 | RAY  lr; | 
| 310 | if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) { | 
| 311 | VCOPY(lr.rdir, nd.vrefl); | 
| 312 | rayvalue(&lr); | 
| 313 | multcolor(lr.rcol, lr.rcoef); | 
| 314 | copycolor(r->mcol, lr.rcol); | 
| 315 | addcolor(r->rcol, lr.rcol); | 
| 316 | if (nd.specfl & SP_FLAT && | 
| 317 | !hastexture | (r->crtype & AMBIENT)) | 
| 318 | r->rmt = r->rot + raydistance(&lr); | 
| 319 | } | 
| 320 | } | 
| 321 | /* diffuse reflection */ | 
| 322 | nd.rdiff = 1.0 - nd.trans - nd.rspec; | 
| 323 |  | 
| 324 | if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) | 
| 325 | return(1);                      /* 100% pure specular */ | 
| 326 |  | 
| 327 | if (!(nd.specfl & SP_PURE)) | 
| 328 | gaussamp(&nd);                  /* checks *BLT flags */ | 
| 329 |  | 
| 330 | if (nd.rdiff > FTINY) {         /* ambient from this side */ | 
| 331 | copycolor(ctmp, nd.mcolor);     /* modified by material color */ | 
| 332 | scalecolor(ctmp, nd.rdiff); | 
| 333 | if (nd.specfl & SP_RBLT)        /* add in specular as well? */ | 
| 334 | addcolor(ctmp, nd.scolor); | 
| 335 | multambient(ctmp, r, hastexture ? nd.pnorm : r->ron); | 
| 336 | addcolor(r->rcol, ctmp);        /* add to returned color */ | 
| 337 | } | 
| 338 | if (nd.tdiff > FTINY) {         /* ambient from other side */ | 
| 339 | copycolor(ctmp, nd.mcolor);     /* modified by color */ | 
| 340 | if (nd.specfl & SP_TBLT) | 
| 341 | scalecolor(ctmp, nd.trans); | 
| 342 | else | 
| 343 | scalecolor(ctmp, nd.tdiff); | 
| 344 | flipsurface(r); | 
| 345 | if (hastexture) { | 
| 346 | FVECT  bnorm; | 
| 347 | bnorm[0] = -nd.pnorm[0]; | 
| 348 | bnorm[1] = -nd.pnorm[1]; | 
| 349 | bnorm[2] = -nd.pnorm[2]; | 
| 350 | multambient(ctmp, r, bnorm); | 
| 351 | } else | 
| 352 | multambient(ctmp, r, r->ron); | 
| 353 | addcolor(r->rcol, ctmp); | 
| 354 | flipsurface(r); | 
| 355 | } | 
| 356 | /* add direct component */ | 
| 357 | direct(r, dirnorm, &nd); | 
| 358 |  | 
| 359 | return(1); | 
| 360 | } | 
| 361 |  | 
| 362 |  | 
| 363 | static void | 
| 364 | gaussamp(                       /* sample Gaussian specular */ | 
| 365 | NORMDAT  *np | 
| 366 | ) | 
| 367 | { | 
| 368 | RAY  sr; | 
| 369 | FVECT  u, v, h; | 
| 370 | double  rv[2]; | 
| 371 | double  d, sinp, cosp; | 
| 372 | COLOR  scol; | 
| 373 | int  maxiter, ntrials, nstarget, nstaken; | 
| 374 | int  i; | 
| 375 | /* quick test */ | 
| 376 | if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && | 
| 377 | (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) | 
| 378 | return; | 
| 379 | /* set up sample coordinates */ | 
| 380 | getperpendicular(u, np->pnorm, rand_samp); | 
| 381 | fcross(v, np->pnorm, u); | 
| 382 | /* compute reflection */ | 
| 383 | if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && | 
| 384 | rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) { | 
| 385 | nstarget = 1; | 
| 386 | if (specjitter > 1.5) { /* multiple samples? */ | 
| 387 | nstarget = specjitter*np->rp->rweight + .5; | 
| 388 | if (sr.rweight <= minweight*nstarget) | 
| 389 | nstarget = sr.rweight/minweight; | 
| 390 | if (nstarget > 1) { | 
| 391 | d = 1./nstarget; | 
| 392 | scalecolor(sr.rcoef, d); | 
| 393 | sr.rweight *= d; | 
| 394 | } else | 
| 395 | nstarget = 1; | 
| 396 | } | 
| 397 | setcolor(scol, 0., 0., 0.); | 
| 398 | dimlist[ndims++] = (int)(size_t)np->mp; | 
| 399 | maxiter = MAXITER*nstarget; | 
| 400 | for (nstaken = ntrials = 0; nstaken < nstarget && | 
| 401 | ntrials < maxiter; ntrials++) { | 
| 402 | if (ntrials) | 
| 403 | d = frandom(); | 
| 404 | else | 
| 405 | d = urand(ilhash(dimlist,ndims)+samplendx); | 
| 406 | multisamp(rv, 2, d); | 
| 407 | d = 2.0*PI * rv[0]; | 
| 408 | cosp = tcos(d); | 
| 409 | sinp = tsin(d); | 
| 410 | if ((0. <= specjitter) & (specjitter < 1.)) | 
| 411 | rv[1] = 1.0 - specjitter*rv[1]; | 
| 412 | if (rv[1] <= FTINY) | 
| 413 | d = 1.0; | 
| 414 | else | 
| 415 | d = sqrt( np->alpha2 * -log(rv[1]) ); | 
| 416 | for (i = 0; i < 3; i++) | 
| 417 | h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); | 
| 418 | d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); | 
| 419 | VSUM(sr.rdir, np->rp->rdir, h, d); | 
| 420 | /* sample rejection test */ | 
| 421 | if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) | 
| 422 | continue; | 
| 423 | checknorm(sr.rdir); | 
| 424 | if (nstarget > 1) {     /* W-G-M-D adjustment */ | 
| 425 | if (nstaken) rayclear(&sr); | 
| 426 | rayvalue(&sr); | 
| 427 | d = 2./(1. + np->rp->rod/d); | 
| 428 | scalecolor(sr.rcol, d); | 
| 429 | addcolor(scol, sr.rcol); | 
| 430 | } else { | 
| 431 | rayvalue(&sr); | 
| 432 | multcolor(sr.rcol, sr.rcoef); | 
| 433 | addcolor(np->rp->rcol, sr.rcol); | 
| 434 | } | 
| 435 | ++nstaken; | 
| 436 | } | 
| 437 | if (nstarget > 1) {             /* final W-G-M-D weighting */ | 
| 438 | multcolor(scol, sr.rcoef); | 
| 439 | d = (double)nstarget/ntrials; | 
| 440 | scalecolor(scol, d); | 
| 441 | addcolor(np->rp->rcol, scol); | 
| 442 | } | 
| 443 | ndims--; | 
| 444 | } | 
| 445 | /* compute transmission */ | 
| 446 | copycolor(sr.rcoef, np->mcolor);        /* modified by color */ | 
| 447 | scalecolor(sr.rcoef, np->tspec); | 
| 448 | if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && | 
| 449 | rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) { | 
| 450 | nstarget = 1; | 
| 451 | if (specjitter > 1.5) { /* multiple samples? */ | 
| 452 | nstarget = specjitter*np->rp->rweight + .5; | 
| 453 | if (sr.rweight <= minweight*nstarget) | 
| 454 | nstarget = sr.rweight/minweight; | 
| 455 | if (nstarget > 1) { | 
| 456 | d = 1./nstarget; | 
| 457 | scalecolor(sr.rcoef, d); | 
| 458 | sr.rweight *= d; | 
| 459 | } else | 
| 460 | nstarget = 1; | 
| 461 | } | 
| 462 | dimlist[ndims++] = (int)(size_t)np->mp; | 
| 463 | maxiter = MAXITER*nstarget; | 
| 464 | for (nstaken = ntrials = 0; nstaken < nstarget && | 
| 465 | ntrials < maxiter; ntrials++) { | 
| 466 | if (ntrials) | 
| 467 | d = frandom(); | 
| 468 | else | 
| 469 | d = urand(ilhash(dimlist,ndims)+samplendx); | 
| 470 | multisamp(rv, 2, d); | 
| 471 | d = 2.0*PI * rv[0]; | 
| 472 | cosp = tcos(d); | 
| 473 | sinp = tsin(d); | 
| 474 | if ((0. <= specjitter) & (specjitter < 1.)) | 
| 475 | rv[1] = 1.0 - specjitter*rv[1]; | 
| 476 | if (rv[1] <= FTINY) | 
| 477 | d = 1.0; | 
| 478 | else | 
| 479 | d = sqrt( np->alpha2 * -log(rv[1]) ); | 
| 480 | for (i = 0; i < 3; i++) | 
| 481 | sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); | 
| 482 | /* sample rejection test */ | 
| 483 | if (DOT(sr.rdir, np->rp->ron) >= -FTINY) | 
| 484 | continue; | 
| 485 | normalize(sr.rdir);     /* OK, normalize */ | 
| 486 | if (nstaken)            /* multi-sampling */ | 
| 487 | rayclear(&sr); | 
| 488 | rayvalue(&sr); | 
| 489 | multcolor(sr.rcol, sr.rcoef); | 
| 490 | addcolor(np->rp->rcol, sr.rcol); | 
| 491 | ++nstaken; | 
| 492 | } | 
| 493 | ndims--; | 
| 494 | } | 
| 495 | } |