1 |
– |
/* Copyright (c) 1992 Regents of the University of California */ |
2 |
– |
|
1 |
|
#ifndef lint |
2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
2 |
> |
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
6 |
– |
|
4 |
|
/* |
5 |
|
* normal.c - shading function for normal materials. |
6 |
|
* |
11 |
|
* Later changes described in delta comments. |
12 |
|
*/ |
13 |
|
|
14 |
< |
#include "ray.h" |
14 |
> |
#include "copyright.h" |
15 |
|
|
16 |
+ |
#include "ray.h" |
17 |
+ |
#include "ambient.h" |
18 |
+ |
#include "source.h" |
19 |
|
#include "otypes.h" |
20 |
< |
|
20 |
> |
#include "rtotypes.h" |
21 |
|
#include "random.h" |
22 |
|
|
23 |
+ |
#ifndef MAXITER |
24 |
+ |
#define MAXITER 10 /* maximum # specular ray attempts */ |
25 |
+ |
#endif |
26 |
+ |
/* estimate of Fresnel function */ |
27 |
+ |
#define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916) |
28 |
+ |
#define FRESTHRESH 0.017999 /* minimum specularity for approx. */ |
29 |
+ |
|
30 |
+ |
|
31 |
|
/* |
32 |
< |
* This routine uses portions of the reflection |
33 |
< |
* model described by Cook and Torrance. |
26 |
< |
* The computation of specular components has been simplified by |
27 |
< |
* numerous approximations and ommisions to improve speed. |
32 |
> |
* This routine implements the isotropic Gaussian |
33 |
> |
* model described by Ward in Siggraph `92 article. |
34 |
|
* We orient the surface towards the incoming ray, so a single |
35 |
|
* surface can be used to represent an infinitely thin object. |
36 |
|
* |
41 |
|
* red grn blu rspec rough trans tspec |
42 |
|
*/ |
43 |
|
|
38 |
– |
#define BSPEC(m) (6.0) /* specularity parameter b */ |
39 |
– |
|
44 |
|
/* specularity flags */ |
45 |
|
#define SP_REFL 01 /* has reflected specular component */ |
46 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
47 |
< |
#define SP_PURE 010 /* purely specular (zero roughness) */ |
48 |
< |
#define SP_FLAT 020 /* flat reflecting surface */ |
47 |
> |
#define SP_PURE 04 /* purely specular (zero roughness) */ |
48 |
> |
#define SP_FLAT 010 /* flat reflecting surface */ |
49 |
> |
#define SP_RBLT 020 /* reflection below sample threshold */ |
50 |
> |
#define SP_TBLT 040 /* transmission below threshold */ |
51 |
|
|
52 |
|
typedef struct { |
53 |
|
OBJREC *mp; /* material pointer */ |
54 |
+ |
RAY *rp; /* ray pointer */ |
55 |
|
short specfl; /* specularity flags, defined above */ |
56 |
|
COLOR mcolor; /* color of this material */ |
57 |
|
COLOR scolor; /* color of specular component */ |
65 |
|
double pdot; /* perturbed dot product */ |
66 |
|
} NORMDAT; /* normal material data */ |
67 |
|
|
68 |
+ |
static srcdirf_t dirnorm; |
69 |
+ |
static void gaussamp(RAY *r, NORMDAT *np); |
70 |
|
|
71 |
< |
dirnorm(cval, np, ldir, omega) /* compute source contribution */ |
72 |
< |
COLOR cval; /* returned coefficient */ |
73 |
< |
register NORMDAT *np; /* material data */ |
74 |
< |
FVECT ldir; /* light source direction */ |
75 |
< |
double omega; /* light source size */ |
71 |
> |
|
72 |
> |
static void |
73 |
> |
dirnorm( /* compute source contribution */ |
74 |
> |
COLOR cval, /* returned coefficient */ |
75 |
> |
void *nnp, /* material data */ |
76 |
> |
FVECT ldir, /* light source direction */ |
77 |
> |
double omega /* light source size */ |
78 |
> |
) |
79 |
|
{ |
80 |
+ |
register NORMDAT *np = nnp; |
81 |
|
double ldot; |
82 |
< |
double dtmp; |
83 |
< |
int i; |
82 |
> |
double lrdiff, ltdiff; |
83 |
> |
double dtmp, d2, d3, d4; |
84 |
> |
FVECT vtmp; |
85 |
|
COLOR ctmp; |
86 |
|
|
87 |
|
setcolor(cval, 0.0, 0.0, 0.0); |
91 |
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
92 |
|
return; /* wrong side */ |
93 |
|
|
94 |
< |
if (ldot > FTINY && np->rdiff > FTINY) { |
94 |
> |
/* Fresnel estimate */ |
95 |
> |
lrdiff = np->rdiff; |
96 |
> |
ltdiff = np->tdiff; |
97 |
> |
if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH && |
98 |
> |
(lrdiff > FTINY) | (ltdiff > FTINY)) { |
99 |
> |
dtmp = 1. - FRESNE(fabs(ldot)); |
100 |
> |
lrdiff *= dtmp; |
101 |
> |
ltdiff *= dtmp; |
102 |
> |
} |
103 |
> |
|
104 |
> |
if (ldot > FTINY && lrdiff > FTINY) { |
105 |
|
/* |
106 |
|
* Compute and add diffuse reflected component to returned |
107 |
|
* color. The diffuse reflected component will always be |
108 |
|
* modified by the color of the material. |
109 |
|
*/ |
110 |
|
copycolor(ctmp, np->mcolor); |
111 |
< |
dtmp = ldot * omega * np->rdiff / PI; |
111 |
> |
dtmp = ldot * omega * lrdiff * (1.0/PI); |
112 |
|
scalecolor(ctmp, dtmp); |
113 |
|
addcolor(cval, ctmp); |
114 |
|
} |
115 |
|
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) { |
116 |
|
/* |
117 |
|
* Compute specular reflection coefficient using |
118 |
< |
* gaussian distribution model. |
118 |
> |
* Gaussian distribution model. |
119 |
|
*/ |
120 |
|
/* roughness */ |
121 |
< |
dtmp = 2.0*np->alpha2; |
121 |
> |
dtmp = np->alpha2; |
122 |
|
/* + source if flat */ |
123 |
|
if (np->specfl & SP_FLAT) |
124 |
< |
dtmp += omega/(2.0*PI); |
125 |
< |
/* gaussian */ |
126 |
< |
dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp; |
124 |
> |
dtmp += omega * (0.25/PI); |
125 |
> |
/* half vector */ |
126 |
> |
vtmp[0] = ldir[0] - np->rp->rdir[0]; |
127 |
> |
vtmp[1] = ldir[1] - np->rp->rdir[1]; |
128 |
> |
vtmp[2] = ldir[2] - np->rp->rdir[2]; |
129 |
> |
d2 = DOT(vtmp, np->pnorm); |
130 |
> |
d2 *= d2; |
131 |
> |
d3 = DOT(vtmp,vtmp); |
132 |
> |
d4 = (d3 - d2) / d2; |
133 |
> |
/* new W-G-M-D model */ |
134 |
> |
dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp); |
135 |
|
/* worth using? */ |
136 |
|
if (dtmp > FTINY) { |
137 |
|
copycolor(ctmp, np->scolor); |
138 |
< |
dtmp *= omega / np->pdot; |
138 |
> |
dtmp *= ldot * omega; |
139 |
|
scalecolor(ctmp, dtmp); |
140 |
|
addcolor(cval, ctmp); |
141 |
|
} |
142 |
|
} |
143 |
< |
if (ldot < -FTINY && np->tdiff > FTINY) { |
143 |
> |
if (ldot < -FTINY && ltdiff > FTINY) { |
144 |
|
/* |
145 |
|
* Compute diffuse transmission. |
146 |
|
*/ |
147 |
|
copycolor(ctmp, np->mcolor); |
148 |
< |
dtmp = -ldot * omega * np->tdiff / PI; |
148 |
> |
dtmp = -ldot * omega * ltdiff * (1.0/PI); |
149 |
|
scalecolor(ctmp, dtmp); |
150 |
|
addcolor(cval, ctmp); |
151 |
|
} |
155 |
|
* is always modified by material color. |
156 |
|
*/ |
157 |
|
/* roughness + source */ |
158 |
< |
dtmp = np->alpha2 + omega/(2.0*PI); |
159 |
< |
/* gaussian */ |
160 |
< |
dtmp = exp((DOT(np->prdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp; |
158 |
> |
dtmp = np->alpha2 + omega*(1.0/PI); |
159 |
> |
/* Gaussian */ |
160 |
> |
dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); |
161 |
|
/* worth using? */ |
162 |
|
if (dtmp > FTINY) { |
163 |
|
copycolor(ctmp, np->mcolor); |
164 |
< |
dtmp *= np->tspec * omega / np->pdot; |
164 |
> |
dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot); |
165 |
|
scalecolor(ctmp, dtmp); |
166 |
|
addcolor(cval, ctmp); |
167 |
|
} |
169 |
|
} |
170 |
|
|
171 |
|
|
172 |
< |
m_normal(m, r) /* color a ray that hit something normal */ |
173 |
< |
register OBJREC *m; |
174 |
< |
register RAY *r; |
172 |
> |
extern int |
173 |
> |
m_normal( /* color a ray that hit something normal */ |
174 |
> |
register OBJREC *m, |
175 |
> |
register RAY *r |
176 |
> |
) |
177 |
|
{ |
178 |
|
NORMDAT nd; |
179 |
+ |
double fest; |
180 |
|
double transtest, transdist; |
181 |
< |
double dtmp; |
181 |
> |
double mirtest, mirdist; |
182 |
> |
int hastexture; |
183 |
> |
double d; |
184 |
|
COLOR ctmp; |
185 |
|
register int i; |
186 |
|
/* easy shadow test */ |
187 |
|
if (r->crtype & SHADOW && m->otype != MAT_TRANS) |
188 |
< |
return; |
188 |
> |
return(1); |
189 |
|
|
190 |
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) |
191 |
|
objerror(m, USER, "bad number of arguments"); |
192 |
+ |
/* check for back side */ |
193 |
+ |
if (r->rod < 0.0) { |
194 |
+ |
if (!backvis && m->otype != MAT_TRANS) { |
195 |
+ |
raytrans(r); |
196 |
+ |
return(1); |
197 |
+ |
} |
198 |
+ |
raytexture(r, m->omod); |
199 |
+ |
flipsurface(r); /* reorient if backvis */ |
200 |
+ |
} else |
201 |
+ |
raytexture(r, m->omod); |
202 |
|
nd.mp = m; |
203 |
+ |
nd.rp = r; |
204 |
|
/* get material color */ |
205 |
|
setcolor(nd.mcolor, m->oargs.farg[0], |
206 |
|
m->oargs.farg[1], |
210 |
|
nd.alpha2 = m->oargs.farg[4]; |
211 |
|
if ((nd.alpha2 *= nd.alpha2) <= FTINY) |
212 |
|
nd.specfl |= SP_PURE; |
213 |
< |
/* reorient if necessary */ |
214 |
< |
if (r->rod < 0.0) |
215 |
< |
flipsurface(r); |
216 |
< |
/* get modifiers */ |
217 |
< |
raytexture(r, m->omod); |
218 |
< |
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
213 |
> |
|
214 |
> |
if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) { |
215 |
> |
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
216 |
> |
} else { |
217 |
> |
VCOPY(nd.pnorm, r->ron); |
218 |
> |
nd.pdot = r->rod; |
219 |
> |
} |
220 |
> |
if (r->ro != NULL && isflat(r->ro->otype)) |
221 |
> |
nd.specfl |= SP_FLAT; |
222 |
|
if (nd.pdot < .001) |
223 |
|
nd.pdot = .001; /* non-zero for dirnorm() */ |
224 |
|
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
225 |
< |
transtest = 0; |
226 |
< |
/* get specular component */ |
227 |
< |
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
228 |
< |
nd.specfl |= SP_REFL; |
229 |
< |
/* compute specular color */ |
230 |
< |
if (m->otype == MAT_METAL) |
231 |
< |
copycolor(nd.scolor, nd.mcolor); |
232 |
< |
else |
233 |
< |
setcolor(nd.scolor, 1.0, 1.0, 1.0); |
183 |
< |
scalecolor(nd.scolor, nd.rspec); |
184 |
< |
/* improved model */ |
185 |
< |
dtmp = exp(-BSPEC(m)*nd.pdot); |
186 |
< |
for (i = 0; i < 3; i++) |
187 |
< |
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; |
188 |
< |
nd.rspec += (1.0-nd.rspec)*dtmp; |
189 |
< |
/* compute reflected ray */ |
190 |
< |
for (i = 0; i < 3; i++) |
191 |
< |
nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; |
192 |
< |
|
193 |
< |
if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { |
194 |
< |
RAY lr; |
195 |
< |
if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { |
196 |
< |
VCOPY(lr.rdir, nd.vrefl); |
197 |
< |
rayvalue(&lr); |
198 |
< |
multcolor(lr.rcol, nd.scolor); |
199 |
< |
addcolor(r->rcol, lr.rcol); |
200 |
< |
} |
201 |
< |
} |
202 |
< |
} |
225 |
> |
mirtest = transtest = 0; |
226 |
> |
mirdist = transdist = r->rot; |
227 |
> |
nd.rspec = m->oargs.farg[3]; |
228 |
> |
/* compute Fresnel approx. */ |
229 |
> |
if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) { |
230 |
> |
fest = FRESNE(r->rod); |
231 |
> |
nd.rspec += fest*(1. - nd.rspec); |
232 |
> |
} else |
233 |
> |
fest = 0.; |
234 |
|
/* compute transmission */ |
235 |
|
if (m->otype == MAT_TRANS) { |
236 |
|
nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec); |
238 |
|
nd.tdiff = nd.trans - nd.tspec; |
239 |
|
if (nd.tspec > FTINY) { |
240 |
|
nd.specfl |= SP_TRAN; |
241 |
< |
if (r->crtype & SHADOW || |
242 |
< |
DOT(r->pert,r->pert) <= FTINY*FTINY) { |
241 |
> |
/* check threshold */ |
242 |
> |
if (!(nd.specfl & SP_PURE) && |
243 |
> |
specthresh >= nd.tspec-FTINY) |
244 |
> |
nd.specfl |= SP_TBLT; |
245 |
> |
if (!hastexture || r->crtype & SHADOW) { |
246 |
|
VCOPY(nd.prdir, r->rdir); |
247 |
|
transtest = 2; |
248 |
|
} else { |
249 |
|
for (i = 0; i < 3; i++) /* perturb */ |
250 |
< |
nd.prdir[i] = r->rdir[i] - |
251 |
< |
.75*r->pert[i]; |
252 |
< |
normalize(nd.prdir); |
250 |
> |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
251 |
> |
if (DOT(nd.prdir, r->ron) < -FTINY) |
252 |
> |
normalize(nd.prdir); /* OK */ |
253 |
> |
else |
254 |
> |
VCOPY(nd.prdir, r->rdir); |
255 |
|
} |
256 |
|
} |
257 |
|
} else |
258 |
|
nd.tdiff = nd.tspec = nd.trans = 0.0; |
259 |
|
/* transmitted ray */ |
260 |
< |
if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) { |
260 |
> |
if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) { |
261 |
|
RAY lr; |
262 |
< |
if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { |
262 |
> |
copycolor(lr.rcoef, nd.mcolor); /* modified by color */ |
263 |
> |
scalecolor(lr.rcoef, nd.tspec); |
264 |
> |
if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) { |
265 |
|
VCOPY(lr.rdir, nd.prdir); |
266 |
|
rayvalue(&lr); |
267 |
< |
scalecolor(lr.rcol, nd.tspec); |
230 |
< |
multcolor(lr.rcol, nd.mcolor); /* modified by color */ |
267 |
> |
multcolor(lr.rcol, lr.rcoef); |
268 |
|
addcolor(r->rcol, lr.rcol); |
269 |
|
transtest *= bright(lr.rcol); |
270 |
|
transdist = r->rot + lr.rt; |
271 |
|
} |
272 |
< |
} |
272 |
> |
} else |
273 |
> |
transtest = 0; |
274 |
|
|
275 |
< |
if (r->crtype & SHADOW) /* the rest is shadow */ |
276 |
< |
return; |
275 |
> |
if (r->crtype & SHADOW) { /* the rest is shadow */ |
276 |
> |
r->rt = transdist; |
277 |
> |
return(1); |
278 |
> |
} |
279 |
> |
/* get specular reflection */ |
280 |
> |
if (nd.rspec > FTINY) { |
281 |
> |
nd.specfl |= SP_REFL; |
282 |
> |
/* compute specular color */ |
283 |
> |
if (m->otype != MAT_METAL) { |
284 |
> |
setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec); |
285 |
> |
} else if (fest > FTINY) { |
286 |
> |
d = nd.rspec*(1. - fest); |
287 |
> |
for (i = 0; i < 3; i++) |
288 |
> |
nd.scolor[i] = fest + nd.mcolor[i]*d; |
289 |
> |
} else { |
290 |
> |
copycolor(nd.scolor, nd.mcolor); |
291 |
> |
scalecolor(nd.scolor, nd.rspec); |
292 |
> |
} |
293 |
> |
/* check threshold */ |
294 |
> |
if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY) |
295 |
> |
nd.specfl |= SP_RBLT; |
296 |
> |
/* compute reflected ray */ |
297 |
> |
VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot); |
298 |
> |
/* penetration? */ |
299 |
> |
if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY) |
300 |
> |
VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod); |
301 |
> |
checknorm(nd.vrefl); |
302 |
> |
} |
303 |
> |
/* reflected ray */ |
304 |
> |
if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) { |
305 |
> |
RAY lr; |
306 |
> |
if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) { |
307 |
> |
VCOPY(lr.rdir, nd.vrefl); |
308 |
> |
rayvalue(&lr); |
309 |
> |
multcolor(lr.rcol, lr.rcoef); |
310 |
> |
addcolor(r->rcol, lr.rcol); |
311 |
> |
if (!hastexture && nd.specfl & SP_FLAT) { |
312 |
> |
mirtest = 2.*bright(lr.rcol); |
313 |
> |
mirdist = r->rot + lr.rt; |
314 |
> |
} |
315 |
> |
} |
316 |
> |
} |
317 |
|
/* diffuse reflection */ |
318 |
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
319 |
|
|
320 |
|
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) |
321 |
< |
return; /* 100% pure specular */ |
321 |
> |
return(1); /* 100% pure specular */ |
322 |
|
|
323 |
< |
if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING) |
324 |
< |
nd.specfl |= SP_FLAT; |
323 |
> |
if (!(nd.specfl & SP_PURE)) |
324 |
> |
gaussamp(r, &nd); /* checks *BLT flags */ |
325 |
|
|
248 |
– |
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE)) |
249 |
– |
gaussamp(r, &nd); |
250 |
– |
|
326 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
327 |
< |
ambient(ctmp, r); |
327 |
> |
copycolor(ctmp, nd.mcolor); /* modified by material color */ |
328 |
|
scalecolor(ctmp, nd.rdiff); |
329 |
< |
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
329 |
> |
if (nd.specfl & SP_RBLT) /* add in specular as well? */ |
330 |
> |
addcolor(ctmp, nd.scolor); |
331 |
> |
multambient(ctmp, r, hastexture ? nd.pnorm : r->ron); |
332 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
333 |
|
} |
334 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
335 |
+ |
copycolor(ctmp, nd.mcolor); /* modified by color */ |
336 |
+ |
if (nd.specfl & SP_TBLT) |
337 |
+ |
scalecolor(ctmp, nd.trans); |
338 |
+ |
else |
339 |
+ |
scalecolor(ctmp, nd.tdiff); |
340 |
|
flipsurface(r); |
341 |
< |
ambient(ctmp, r); |
342 |
< |
scalecolor(ctmp, nd.tdiff); |
343 |
< |
multcolor(ctmp, nd.mcolor); /* modified by color */ |
341 |
> |
if (hastexture) { |
342 |
> |
FVECT bnorm; |
343 |
> |
bnorm[0] = -nd.pnorm[0]; |
344 |
> |
bnorm[1] = -nd.pnorm[1]; |
345 |
> |
bnorm[2] = -nd.pnorm[2]; |
346 |
> |
multambient(ctmp, r, bnorm); |
347 |
> |
} else |
348 |
> |
multambient(ctmp, r, r->ron); |
349 |
|
addcolor(r->rcol, ctmp); |
350 |
|
flipsurface(r); |
351 |
|
} |
352 |
|
/* add direct component */ |
353 |
|
direct(r, dirnorm, &nd); |
354 |
|
/* check distance */ |
355 |
< |
if (transtest > bright(r->rcol)) |
355 |
> |
d = bright(r->rcol); |
356 |
> |
if (transtest > d) |
357 |
|
r->rt = transdist; |
358 |
+ |
else if (mirtest > d) |
359 |
+ |
r->rt = mirdist; |
360 |
+ |
|
361 |
+ |
return(1); |
362 |
|
} |
363 |
|
|
364 |
|
|
365 |
< |
static |
366 |
< |
gaussamp(r, np) /* sample gaussian specular */ |
367 |
< |
RAY *r; |
368 |
< |
register NORMDAT *np; |
365 |
> |
static void |
366 |
> |
gaussamp( /* sample Gaussian specular */ |
367 |
> |
RAY *r, |
368 |
> |
register NORMDAT *np |
369 |
> |
) |
370 |
|
{ |
371 |
|
RAY sr; |
372 |
|
FVECT u, v, h; |
373 |
|
double rv[2]; |
374 |
|
double d, sinp, cosp; |
375 |
< |
int confuse; |
375 |
> |
COLOR scol; |
376 |
> |
int maxiter, ntrials, nstarget, nstaken; |
377 |
|
register int i; |
378 |
+ |
/* quick test */ |
379 |
+ |
if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && |
380 |
+ |
(np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) |
381 |
+ |
return; |
382 |
|
/* set up sample coordinates */ |
383 |
|
v[0] = v[1] = v[2] = 0.0; |
384 |
|
for (i = 0; i < 3; i++) |
389 |
|
normalize(u); |
390 |
|
fcross(v, np->pnorm, u); |
391 |
|
/* compute reflection */ |
392 |
< |
if (np->specfl & SP_REFL && |
393 |
< |
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
394 |
< |
confuse = 0; |
395 |
< |
dimlist[ndims++] = (int)np->mp; |
396 |
< |
refagain: |
397 |
< |
dimlist[ndims] = confuse += 3601; |
398 |
< |
d = urand(ilhash(dimlist,ndims+1)+samplendx); |
399 |
< |
multisamp(rv, 2, d); |
400 |
< |
d = 2.0*PI * rv[0]; |
401 |
< |
cosp = cos(d); |
402 |
< |
sinp = sin(d); |
403 |
< |
if (rv[1] <= FTINY) |
404 |
< |
d = 1.0; |
405 |
< |
else |
406 |
< |
d = sqrt( np->alpha2 * -log(rv[1]) ); |
407 |
< |
for (i = 0; i < 3; i++) |
408 |
< |
h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); |
409 |
< |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
410 |
< |
for (i = 0; i < 3; i++) |
411 |
< |
sr.rdir[i] = r->rdir[i] + d*h[i]; |
412 |
< |
if (DOT(sr.rdir, r->ron) <= FTINY) /* oops! */ |
413 |
< |
goto refagain; |
414 |
< |
rayvalue(&sr); |
415 |
< |
multcolor(sr.rcol, np->scolor); |
416 |
< |
addcolor(r->rcol, sr.rcol); |
392 |
> |
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
393 |
> |
rayorigin(&sr, SPECULAR, r, np->scolor) == 0) { |
394 |
> |
nstarget = 1; |
395 |
> |
if (specjitter > 1.5) { /* multiple samples? */ |
396 |
> |
nstarget = specjitter*r->rweight + .5; |
397 |
> |
if (sr.rweight <= minweight*nstarget) |
398 |
> |
nstarget = sr.rweight/minweight; |
399 |
> |
if (nstarget > 1) { |
400 |
> |
d = 1./nstarget; |
401 |
> |
scalecolor(sr.rcoef, d); |
402 |
> |
sr.rweight *= d; |
403 |
> |
} else |
404 |
> |
nstarget = 1; |
405 |
> |
} |
406 |
> |
setcolor(scol, 0., 0., 0.); |
407 |
> |
dimlist[ndims++] = (int)(size_t)np->mp; |
408 |
> |
maxiter = MAXITER*nstarget; |
409 |
> |
for (nstaken = ntrials = 0; nstaken < nstarget && |
410 |
> |
ntrials < maxiter; ntrials++) { |
411 |
> |
if (ntrials) |
412 |
> |
d = frandom(); |
413 |
> |
else |
414 |
> |
d = urand(ilhash(dimlist,ndims)+samplendx); |
415 |
> |
multisamp(rv, 2, d); |
416 |
> |
d = 2.0*PI * rv[0]; |
417 |
> |
cosp = tcos(d); |
418 |
> |
sinp = tsin(d); |
419 |
> |
if ((0. <= specjitter) & (specjitter < 1.)) |
420 |
> |
rv[1] = 1.0 - specjitter*rv[1]; |
421 |
> |
if (rv[1] <= FTINY) |
422 |
> |
d = 1.0; |
423 |
> |
else |
424 |
> |
d = sqrt( np->alpha2 * -log(rv[1]) ); |
425 |
> |
for (i = 0; i < 3; i++) |
426 |
> |
h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); |
427 |
> |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
428 |
> |
VSUM(sr.rdir, r->rdir, h, d); |
429 |
> |
/* sample rejection test */ |
430 |
> |
if ((d = DOT(sr.rdir, r->ron)) <= FTINY) |
431 |
> |
continue; |
432 |
> |
checknorm(sr.rdir); |
433 |
> |
if (nstarget > 1) { /* W-G-M-D adjustment */ |
434 |
> |
if (nstaken) rayclear(&sr); |
435 |
> |
rayvalue(&sr); |
436 |
> |
d = 2./(1. + r->rod/d); |
437 |
> |
scalecolor(sr.rcol, d); |
438 |
> |
addcolor(scol, sr.rcol); |
439 |
> |
} else { |
440 |
> |
rayvalue(&sr); |
441 |
> |
multcolor(sr.rcol, sr.rcoef); |
442 |
> |
addcolor(r->rcol, sr.rcol); |
443 |
> |
} |
444 |
> |
++nstaken; |
445 |
> |
} |
446 |
> |
if (nstarget > 1) { /* final W-G-M-D weighting */ |
447 |
> |
multcolor(scol, sr.rcoef); |
448 |
> |
d = (double)nstarget/ntrials; |
449 |
> |
scalecolor(scol, d); |
450 |
> |
addcolor(r->rcol, scol); |
451 |
> |
} |
452 |
|
ndims--; |
453 |
|
} |
454 |
|
/* compute transmission */ |
455 |
+ |
copycolor(sr.rcoef, np->mcolor); /* modified by color */ |
456 |
+ |
scalecolor(sr.rcoef, np->tspec); |
457 |
+ |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
458 |
+ |
rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) { |
459 |
+ |
nstarget = 1; |
460 |
+ |
if (specjitter > 1.5) { /* multiple samples? */ |
461 |
+ |
nstarget = specjitter*r->rweight + .5; |
462 |
+ |
if (sr.rweight <= minweight*nstarget) |
463 |
+ |
nstarget = sr.rweight/minweight; |
464 |
+ |
if (nstarget > 1) { |
465 |
+ |
d = 1./nstarget; |
466 |
+ |
scalecolor(sr.rcoef, d); |
467 |
+ |
sr.rweight *= d; |
468 |
+ |
} else |
469 |
+ |
nstarget = 1; |
470 |
+ |
} |
471 |
+ |
dimlist[ndims++] = (int)(size_t)np->mp; |
472 |
+ |
maxiter = MAXITER*nstarget; |
473 |
+ |
for (nstaken = ntrials = 0; nstaken < nstarget && |
474 |
+ |
ntrials < maxiter; ntrials++) { |
475 |
+ |
if (ntrials) |
476 |
+ |
d = frandom(); |
477 |
+ |
else |
478 |
+ |
d = urand(ilhash(dimlist,ndims)+samplendx); |
479 |
+ |
multisamp(rv, 2, d); |
480 |
+ |
d = 2.0*PI * rv[0]; |
481 |
+ |
cosp = tcos(d); |
482 |
+ |
sinp = tsin(d); |
483 |
+ |
if ((0. <= specjitter) & (specjitter < 1.)) |
484 |
+ |
rv[1] = 1.0 - specjitter*rv[1]; |
485 |
+ |
if (rv[1] <= FTINY) |
486 |
+ |
d = 1.0; |
487 |
+ |
else |
488 |
+ |
d = sqrt( np->alpha2 * -log(rv[1]) ); |
489 |
+ |
for (i = 0; i < 3; i++) |
490 |
+ |
sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); |
491 |
+ |
/* sample rejection test */ |
492 |
+ |
if (DOT(sr.rdir, r->ron) >= -FTINY) |
493 |
+ |
continue; |
494 |
+ |
normalize(sr.rdir); /* OK, normalize */ |
495 |
+ |
if (nstaken) /* multi-sampling */ |
496 |
+ |
rayclear(&sr); |
497 |
+ |
rayvalue(&sr); |
498 |
+ |
multcolor(sr.rcol, sr.rcoef); |
499 |
+ |
addcolor(r->rcol, sr.rcol); |
500 |
+ |
++nstaken; |
501 |
+ |
} |
502 |
+ |
ndims--; |
503 |
+ |
} |
504 |
|
} |