14 |
|
#include "copyright.h" |
15 |
|
|
16 |
|
#include "ray.h" |
17 |
– |
|
17 |
|
#include "ambient.h" |
18 |
< |
|
18 |
> |
#include "source.h" |
19 |
|
#include "otypes.h" |
20 |
< |
|
20 |
> |
#include "rtotypes.h" |
21 |
|
#include "random.h" |
22 |
+ |
#include "pmapmat.h" |
23 |
|
|
24 |
|
#ifndef MAXITER |
25 |
|
#define MAXITER 10 /* maximum # specular ray attempts */ |
26 |
|
#endif |
27 |
|
/* estimate of Fresnel function */ |
28 |
|
#define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916) |
29 |
+ |
#define FRESTHRESH 0.017999 /* minimum specularity for approx. */ |
30 |
|
|
30 |
– |
static void gaussamp(); |
31 |
|
|
32 |
|
/* |
33 |
|
* This routine implements the isotropic Gaussian |
66 |
|
double pdot; /* perturbed dot product */ |
67 |
|
} NORMDAT; /* normal material data */ |
68 |
|
|
69 |
+ |
static void gaussamp(NORMDAT *np); |
70 |
|
|
71 |
+ |
|
72 |
|
static void |
73 |
< |
dirnorm(cval, np, ldir, omega) /* compute source contribution */ |
74 |
< |
COLOR cval; /* returned coefficient */ |
75 |
< |
register NORMDAT *np; /* material data */ |
76 |
< |
FVECT ldir; /* light source direction */ |
77 |
< |
double omega; /* light source size */ |
73 |
> |
dirnorm( /* compute source contribution */ |
74 |
> |
COLOR cval, /* returned coefficient */ |
75 |
> |
void *nnp, /* material data */ |
76 |
> |
FVECT ldir, /* light source direction */ |
77 |
> |
double omega /* light source size */ |
78 |
> |
) |
79 |
|
{ |
80 |
+ |
NORMDAT *np = nnp; |
81 |
|
double ldot; |
82 |
< |
double ldiff; |
83 |
< |
double dtmp, d2; |
82 |
> |
double lrdiff, ltdiff; |
83 |
> |
double dtmp, d2, d3, d4; |
84 |
|
FVECT vtmp; |
85 |
|
COLOR ctmp; |
86 |
|
|
92 |
|
return; /* wrong side */ |
93 |
|
|
94 |
|
/* Fresnel estimate */ |
95 |
< |
ldiff = np->rdiff; |
96 |
< |
if (np->specfl & SP_PURE && (np->rspec > FTINY) & (ldiff > FTINY)) |
97 |
< |
ldiff *= 1. - FRESNE(fabs(ldot)); |
95 |
> |
lrdiff = np->rdiff; |
96 |
> |
ltdiff = np->tdiff; |
97 |
> |
if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH && |
98 |
> |
(lrdiff > FTINY) | (ltdiff > FTINY)) { |
99 |
> |
dtmp = 1. - FRESNE(fabs(ldot)); |
100 |
> |
lrdiff *= dtmp; |
101 |
> |
ltdiff *= dtmp; |
102 |
> |
} |
103 |
|
|
104 |
< |
if (ldot > FTINY && ldiff > FTINY) { |
104 |
> |
if (ldot > FTINY && lrdiff > FTINY) { |
105 |
|
/* |
106 |
|
* Compute and add diffuse reflected component to returned |
107 |
|
* color. The diffuse reflected component will always be |
108 |
|
* modified by the color of the material. |
109 |
|
*/ |
110 |
|
copycolor(ctmp, np->mcolor); |
111 |
< |
dtmp = ldot * omega * ldiff / PI; |
111 |
> |
dtmp = ldot * omega * lrdiff * (1.0/PI); |
112 |
|
scalecolor(ctmp, dtmp); |
113 |
|
addcolor(cval, ctmp); |
114 |
|
} |
115 |
+ |
|
116 |
+ |
if (ldot < -FTINY && ltdiff > FTINY) { |
117 |
+ |
/* |
118 |
+ |
* Compute diffuse transmission. |
119 |
+ |
*/ |
120 |
+ |
copycolor(ctmp, np->mcolor); |
121 |
+ |
dtmp = -ldot * omega * ltdiff * (1.0/PI); |
122 |
+ |
scalecolor(ctmp, dtmp); |
123 |
+ |
addcolor(cval, ctmp); |
124 |
+ |
} |
125 |
+ |
|
126 |
+ |
if (ambRayInPmap(np->rp)) |
127 |
+ |
return; /* specular already in photon map */ |
128 |
+ |
|
129 |
|
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) { |
130 |
|
/* |
131 |
|
* Compute specular reflection coefficient using |
132 |
< |
* gaussian distribution model. |
132 |
> |
* Gaussian distribution model. |
133 |
|
*/ |
134 |
|
/* roughness */ |
135 |
|
dtmp = np->alpha2; |
136 |
|
/* + source if flat */ |
137 |
|
if (np->specfl & SP_FLAT) |
138 |
< |
dtmp += omega/(4.0*PI); |
138 |
> |
dtmp += omega * (0.25/PI); |
139 |
|
/* half vector */ |
140 |
< |
vtmp[0] = ldir[0] - np->rp->rdir[0]; |
118 |
< |
vtmp[1] = ldir[1] - np->rp->rdir[1]; |
119 |
< |
vtmp[2] = ldir[2] - np->rp->rdir[2]; |
140 |
> |
VSUB(vtmp, ldir, np->rp->rdir); |
141 |
|
d2 = DOT(vtmp, np->pnorm); |
142 |
|
d2 *= d2; |
143 |
< |
d2 = (DOT(vtmp,vtmp) - d2) / d2; |
144 |
< |
/* gaussian */ |
145 |
< |
dtmp = exp(-d2/dtmp)/(4.*PI*dtmp); |
143 |
> |
d3 = DOT(vtmp,vtmp); |
144 |
> |
d4 = (d3 - d2) / d2; |
145 |
> |
/* new W-G-M-D model */ |
146 |
> |
dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp); |
147 |
|
/* worth using? */ |
148 |
|
if (dtmp > FTINY) { |
149 |
|
copycolor(ctmp, np->scolor); |
150 |
< |
dtmp *= omega * sqrt(ldot/np->pdot); |
150 |
> |
dtmp *= ldot * omega; |
151 |
|
scalecolor(ctmp, dtmp); |
152 |
|
addcolor(cval, ctmp); |
153 |
|
} |
154 |
|
} |
155 |
< |
if (ldot < -FTINY && np->tdiff > FTINY) { |
156 |
< |
/* |
135 |
< |
* Compute diffuse transmission. |
136 |
< |
*/ |
137 |
< |
copycolor(ctmp, np->mcolor); |
138 |
< |
dtmp = -ldot * omega * np->tdiff / PI; |
139 |
< |
scalecolor(ctmp, dtmp); |
140 |
< |
addcolor(cval, ctmp); |
141 |
< |
} |
155 |
> |
|
156 |
> |
|
157 |
|
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) { |
158 |
|
/* |
159 |
|
* Compute specular transmission. Specular transmission |
160 |
|
* is always modified by material color. |
161 |
|
*/ |
162 |
|
/* roughness + source */ |
163 |
< |
dtmp = np->alpha2 + omega/PI; |
164 |
< |
/* gaussian */ |
163 |
> |
dtmp = np->alpha2 + omega*(1.0/PI); |
164 |
> |
/* Gaussian */ |
165 |
|
dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); |
166 |
|
/* worth using? */ |
167 |
|
if (dtmp > FTINY) { |
175 |
|
|
176 |
|
|
177 |
|
int |
178 |
< |
m_normal(m, r) /* color a ray that hit something normal */ |
179 |
< |
register OBJREC *m; |
180 |
< |
register RAY *r; |
178 |
> |
m_normal( /* color a ray that hit something normal */ |
179 |
> |
OBJREC *m, |
180 |
> |
RAY *r |
181 |
> |
) |
182 |
|
{ |
183 |
|
NORMDAT nd; |
184 |
|
double fest; |
187 |
|
int hastexture; |
188 |
|
double d; |
189 |
|
COLOR ctmp; |
190 |
< |
register int i; |
190 |
> |
int i; |
191 |
> |
|
192 |
> |
/* PMAP: skip transmitted shadow ray if accounted for in photon map */ |
193 |
> |
if (shadowRayInPmap(r) || ambRayInPmap(r)) |
194 |
> |
return(1); |
195 |
|
/* easy shadow test */ |
196 |
|
if (r->crtype & SHADOW && m->otype != MAT_TRANS) |
197 |
|
return(1); |
200 |
|
objerror(m, USER, "bad number of arguments"); |
201 |
|
/* check for back side */ |
202 |
|
if (r->rod < 0.0) { |
203 |
< |
if (!backvis && m->otype != MAT_TRANS) { |
203 |
> |
if (!backvis) { |
204 |
|
raytrans(r); |
205 |
|
return(1); |
206 |
|
} |
235 |
|
mirdist = transdist = r->rot; |
236 |
|
nd.rspec = m->oargs.farg[3]; |
237 |
|
/* compute Fresnel approx. */ |
238 |
< |
if (nd.specfl & SP_PURE && nd.rspec > FTINY) { |
239 |
< |
fest = FRESNE(r->rod); |
238 |
> |
if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) { |
239 |
> |
fest = FRESNE(nd.pdot); |
240 |
|
nd.rspec += fest*(1. - nd.rspec); |
241 |
|
} else |
242 |
|
fest = 0.; |
251 |
|
if (!(nd.specfl & SP_PURE) && |
252 |
|
specthresh >= nd.tspec-FTINY) |
253 |
|
nd.specfl |= SP_TBLT; |
254 |
< |
if (!hastexture || r->crtype & SHADOW) { |
254 |
> |
if (!hastexture || r->crtype & (SHADOW|AMBIENT)) { |
255 |
|
VCOPY(nd.prdir, r->rdir); |
256 |
|
transtest = 2; |
257 |
|
} else { |
266 |
|
} else |
267 |
|
nd.tdiff = nd.tspec = nd.trans = 0.0; |
268 |
|
/* transmitted ray */ |
269 |
+ |
|
270 |
|
if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) { |
271 |
|
RAY lr; |
272 |
< |
if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { |
272 |
> |
copycolor(lr.rcoef, nd.mcolor); /* modified by color */ |
273 |
> |
scalecolor(lr.rcoef, nd.tspec); |
274 |
> |
if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) { |
275 |
|
VCOPY(lr.rdir, nd.prdir); |
276 |
|
rayvalue(&lr); |
277 |
< |
scalecolor(lr.rcol, nd.tspec); |
255 |
< |
multcolor(lr.rcol, nd.mcolor); /* modified by color */ |
277 |
> |
multcolor(lr.rcol, lr.rcoef); |
278 |
|
addcolor(r->rcol, lr.rcol); |
279 |
|
transtest *= bright(lr.rcol); |
280 |
|
transdist = r->rot + lr.rt; |
293 |
|
if (m->otype != MAT_METAL) { |
294 |
|
setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec); |
295 |
|
} else if (fest > FTINY) { |
296 |
< |
d = nd.rspec*(1. - fest); |
296 |
> |
d = m->oargs.farg[3]*(1. - fest); |
297 |
|
for (i = 0; i < 3; i++) |
298 |
< |
nd.scolor[i] = fest + nd.mcolor[i]*d; |
298 |
> |
colval(nd.scolor,i) = fest + |
299 |
> |
colval(nd.mcolor,i)*d; |
300 |
|
} else { |
301 |
|
copycolor(nd.scolor, nd.mcolor); |
302 |
|
scalecolor(nd.scolor, nd.rspec); |
305 |
|
if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY) |
306 |
|
nd.specfl |= SP_RBLT; |
307 |
|
/* compute reflected ray */ |
308 |
< |
for (i = 0; i < 3; i++) |
286 |
< |
nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i]; |
308 |
> |
VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot); |
309 |
|
/* penetration? */ |
310 |
|
if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY) |
311 |
< |
for (i = 0; i < 3; i++) /* safety measure */ |
312 |
< |
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
311 |
> |
VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod); |
312 |
> |
checknorm(nd.vrefl); |
313 |
|
} |
314 |
|
/* reflected ray */ |
315 |
|
if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) { |
316 |
|
RAY lr; |
317 |
< |
if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { |
317 |
> |
if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) { |
318 |
|
VCOPY(lr.rdir, nd.vrefl); |
319 |
|
rayvalue(&lr); |
320 |
< |
multcolor(lr.rcol, nd.scolor); |
320 |
> |
multcolor(lr.rcol, lr.rcoef); |
321 |
|
addcolor(r->rcol, lr.rcol); |
322 |
< |
if (!hastexture && nd.specfl & SP_FLAT) { |
322 |
> |
if (nd.specfl & SP_FLAT && |
323 |
> |
!hastexture | (r->crtype & AMBIENT)) { |
324 |
|
mirtest = 2.*bright(lr.rcol); |
325 |
|
mirdist = r->rot + lr.rt; |
326 |
|
} |
333 |
|
return(1); /* 100% pure specular */ |
334 |
|
|
335 |
|
if (!(nd.specfl & SP_PURE)) |
336 |
< |
gaussamp(r, &nd); /* checks *BLT flags */ |
336 |
> |
gaussamp(&nd); /* checks *BLT flags */ |
337 |
|
|
338 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
339 |
< |
ambient(ctmp, r, hastexture?nd.pnorm:r->ron); |
340 |
< |
if (nd.specfl & SP_RBLT) |
341 |
< |
scalecolor(ctmp, 1.0-nd.trans); |
342 |
< |
else |
343 |
< |
scalecolor(ctmp, nd.rdiff); |
321 |
< |
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
339 |
> |
copycolor(ctmp, nd.mcolor); /* modified by material color */ |
340 |
> |
scalecolor(ctmp, nd.rdiff); |
341 |
> |
if (nd.specfl & SP_RBLT) /* add in specular as well? */ |
342 |
> |
addcolor(ctmp, nd.scolor); |
343 |
> |
multambient(ctmp, r, hastexture ? nd.pnorm : r->ron); |
344 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
345 |
|
} |
346 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
347 |
+ |
copycolor(ctmp, nd.mcolor); /* modified by color */ |
348 |
+ |
if (nd.specfl & SP_TBLT) |
349 |
+ |
scalecolor(ctmp, nd.trans); |
350 |
+ |
else |
351 |
+ |
scalecolor(ctmp, nd.tdiff); |
352 |
|
flipsurface(r); |
353 |
|
if (hastexture) { |
354 |
|
FVECT bnorm; |
355 |
|
bnorm[0] = -nd.pnorm[0]; |
356 |
|
bnorm[1] = -nd.pnorm[1]; |
357 |
|
bnorm[2] = -nd.pnorm[2]; |
358 |
< |
ambient(ctmp, r, bnorm); |
358 |
> |
multambient(ctmp, r, bnorm); |
359 |
|
} else |
360 |
< |
ambient(ctmp, r, r->ron); |
334 |
< |
if (nd.specfl & SP_TBLT) |
335 |
< |
scalecolor(ctmp, nd.trans); |
336 |
< |
else |
337 |
< |
scalecolor(ctmp, nd.tdiff); |
338 |
< |
multcolor(ctmp, nd.mcolor); /* modified by color */ |
360 |
> |
multambient(ctmp, r, r->ron); |
361 |
|
addcolor(r->rcol, ctmp); |
362 |
|
flipsurface(r); |
363 |
|
} |
375 |
|
|
376 |
|
|
377 |
|
static void |
378 |
< |
gaussamp(r, np) /* sample gaussian specular */ |
379 |
< |
RAY *r; |
380 |
< |
register NORMDAT *np; |
378 |
> |
gaussamp( /* sample Gaussian specular */ |
379 |
> |
NORMDAT *np |
380 |
> |
) |
381 |
|
{ |
382 |
|
RAY sr; |
383 |
|
FVECT u, v, h; |
384 |
|
double rv[2]; |
385 |
|
double d, sinp, cosp; |
386 |
< |
int niter; |
387 |
< |
register int i; |
386 |
> |
COLOR scol; |
387 |
> |
int maxiter, ntrials, nstarget, nstaken; |
388 |
> |
int i; |
389 |
|
/* quick test */ |
390 |
|
if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && |
391 |
|
(np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) |
392 |
|
return; |
393 |
|
/* set up sample coordinates */ |
394 |
< |
v[0] = v[1] = v[2] = 0.0; |
372 |
< |
for (i = 0; i < 3; i++) |
373 |
< |
if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6) |
374 |
< |
break; |
375 |
< |
v[i] = 1.0; |
376 |
< |
fcross(u, v, np->pnorm); |
377 |
< |
normalize(u); |
394 |
> |
getperpendicular(u, np->pnorm, rand_samp); |
395 |
|
fcross(v, np->pnorm, u); |
396 |
|
/* compute reflection */ |
397 |
|
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
398 |
< |
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
399 |
< |
dimlist[ndims++] = (int)np->mp; |
400 |
< |
for (niter = 0; niter < MAXITER; niter++) { |
401 |
< |
if (niter) |
398 |
> |
rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) { |
399 |
> |
nstarget = 1; |
400 |
> |
if (specjitter > 1.5) { /* multiple samples? */ |
401 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
402 |
> |
if (sr.rweight <= minweight*nstarget) |
403 |
> |
nstarget = sr.rweight/minweight; |
404 |
> |
if (nstarget > 1) { |
405 |
> |
d = 1./nstarget; |
406 |
> |
scalecolor(sr.rcoef, d); |
407 |
> |
sr.rweight *= d; |
408 |
> |
} else |
409 |
> |
nstarget = 1; |
410 |
> |
} |
411 |
> |
setcolor(scol, 0., 0., 0.); |
412 |
> |
dimlist[ndims++] = (int)(size_t)np->mp; |
413 |
> |
maxiter = MAXITER*nstarget; |
414 |
> |
for (nstaken = ntrials = 0; nstaken < nstarget && |
415 |
> |
ntrials < maxiter; ntrials++) { |
416 |
> |
if (ntrials) |
417 |
|
d = frandom(); |
418 |
|
else |
419 |
|
d = urand(ilhash(dimlist,ndims)+samplendx); |
421 |
|
d = 2.0*PI * rv[0]; |
422 |
|
cosp = tcos(d); |
423 |
|
sinp = tsin(d); |
424 |
< |
rv[1] = 1.0 - specjitter*rv[1]; |
424 |
> |
if ((0. <= specjitter) & (specjitter < 1.)) |
425 |
> |
rv[1] = 1.0 - specjitter*rv[1]; |
426 |
|
if (rv[1] <= FTINY) |
427 |
|
d = 1.0; |
428 |
|
else |
429 |
|
d = sqrt( np->alpha2 * -log(rv[1]) ); |
430 |
|
for (i = 0; i < 3; i++) |
431 |
|
h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); |
432 |
< |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
433 |
< |
for (i = 0; i < 3; i++) |
434 |
< |
sr.rdir[i] = r->rdir[i] + d*h[i]; |
435 |
< |
if (DOT(sr.rdir, r->ron) > FTINY) { |
432 |
> |
d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); |
433 |
> |
VSUM(sr.rdir, np->rp->rdir, h, d); |
434 |
> |
/* sample rejection test */ |
435 |
> |
if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) |
436 |
> |
continue; |
437 |
> |
checknorm(sr.rdir); |
438 |
> |
if (nstarget > 1) { /* W-G-M-D adjustment */ |
439 |
> |
if (nstaken) rayclear(&sr); |
440 |
|
rayvalue(&sr); |
441 |
< |
multcolor(sr.rcol, np->scolor); |
442 |
< |
addcolor(r->rcol, sr.rcol); |
443 |
< |
break; |
441 |
> |
d = 2./(1. + np->rp->rod/d); |
442 |
> |
scalecolor(sr.rcol, d); |
443 |
> |
addcolor(scol, sr.rcol); |
444 |
> |
} else { |
445 |
> |
rayvalue(&sr); |
446 |
> |
multcolor(sr.rcol, sr.rcoef); |
447 |
> |
addcolor(np->rp->rcol, sr.rcol); |
448 |
|
} |
449 |
+ |
++nstaken; |
450 |
|
} |
451 |
+ |
if (nstarget > 1) { /* final W-G-M-D weighting */ |
452 |
+ |
multcolor(scol, sr.rcoef); |
453 |
+ |
d = (double)nstarget/ntrials; |
454 |
+ |
scalecolor(scol, d); |
455 |
+ |
addcolor(np->rp->rcol, scol); |
456 |
+ |
} |
457 |
|
ndims--; |
458 |
|
} |
459 |
|
/* compute transmission */ |
460 |
+ |
copycolor(sr.rcoef, np->mcolor); /* modified by color */ |
461 |
+ |
scalecolor(sr.rcoef, np->tspec); |
462 |
|
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
463 |
< |
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
464 |
< |
dimlist[ndims++] = (int)np->mp; |
465 |
< |
for (niter = 0; niter < MAXITER; niter++) { |
466 |
< |
if (niter) |
463 |
> |
rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) { |
464 |
> |
nstarget = 1; |
465 |
> |
if (specjitter > 1.5) { /* multiple samples? */ |
466 |
> |
nstarget = specjitter*np->rp->rweight + .5; |
467 |
> |
if (sr.rweight <= minweight*nstarget) |
468 |
> |
nstarget = sr.rweight/minweight; |
469 |
> |
if (nstarget > 1) { |
470 |
> |
d = 1./nstarget; |
471 |
> |
scalecolor(sr.rcoef, d); |
472 |
> |
sr.rweight *= d; |
473 |
> |
} else |
474 |
> |
nstarget = 1; |
475 |
> |
} |
476 |
> |
dimlist[ndims++] = (int)(size_t)np->mp; |
477 |
> |
maxiter = MAXITER*nstarget; |
478 |
> |
for (nstaken = ntrials = 0; nstaken < nstarget && |
479 |
> |
ntrials < maxiter; ntrials++) { |
480 |
> |
if (ntrials) |
481 |
|
d = frandom(); |
482 |
|
else |
483 |
< |
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
483 |
> |
d = urand(ilhash(dimlist,ndims)+samplendx); |
484 |
|
multisamp(rv, 2, d); |
485 |
|
d = 2.0*PI * rv[0]; |
486 |
|
cosp = tcos(d); |
487 |
|
sinp = tsin(d); |
488 |
< |
rv[1] = 1.0 - specjitter*rv[1]; |
488 |
> |
if ((0. <= specjitter) & (specjitter < 1.)) |
489 |
> |
rv[1] = 1.0 - specjitter*rv[1]; |
490 |
|
if (rv[1] <= FTINY) |
491 |
|
d = 1.0; |
492 |
|
else |
493 |
|
d = sqrt( np->alpha2 * -log(rv[1]) ); |
494 |
|
for (i = 0; i < 3; i++) |
495 |
|
sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); |
496 |
< |
if (DOT(sr.rdir, r->ron) < -FTINY) { |
497 |
< |
normalize(sr.rdir); /* OK, normalize */ |
498 |
< |
rayvalue(&sr); |
499 |
< |
scalecolor(sr.rcol, np->tspec); |
500 |
< |
multcolor(sr.rcol, np->mcolor); /* modified */ |
501 |
< |
addcolor(r->rcol, sr.rcol); |
502 |
< |
break; |
503 |
< |
} |
496 |
> |
/* sample rejection test */ |
497 |
> |
if (DOT(sr.rdir, np->rp->ron) >= -FTINY) |
498 |
> |
continue; |
499 |
> |
normalize(sr.rdir); /* OK, normalize */ |
500 |
> |
if (nstaken) /* multi-sampling */ |
501 |
> |
rayclear(&sr); |
502 |
> |
rayvalue(&sr); |
503 |
> |
multcolor(sr.rcol, sr.rcoef); |
504 |
> |
addcolor(np->rp->rcol, sr.rcol); |
505 |
> |
++nstaken; |
506 |
|
} |
507 |
|
ndims--; |
508 |
|
} |