| 20 |
|
|
| 21 |
|
#include "random.h" |
| 22 |
|
|
| 23 |
+ |
extern double specthresh; /* specular sampling threshold */ |
| 24 |
+ |
extern double specjitter; /* specular sampling jitter */ |
| 25 |
+ |
|
| 26 |
|
/* |
| 27 |
|
* This routine uses portions of the reflection |
| 28 |
|
* model described by Cook and Torrance. |
| 43 |
|
/* specularity flags */ |
| 44 |
|
#define SP_REFL 01 /* has reflected specular component */ |
| 45 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
| 46 |
< |
#define SP_PURE 010 /* purely specular (zero roughness) */ |
| 46 |
> |
#define SP_PURE 04 /* purely specular (zero roughness) */ |
| 47 |
> |
#define SP_FLAT 010 /* flat reflecting surface */ |
| 48 |
> |
#define SP_RBLT 020 /* reflection below sample threshold */ |
| 49 |
> |
#define SP_TBLT 040 /* transmission below threshold */ |
| 50 |
|
|
| 51 |
|
typedef struct { |
| 52 |
|
OBJREC *mp; /* material pointer */ |
| 72 |
|
{ |
| 73 |
|
double ldot; |
| 74 |
|
double dtmp; |
| 75 |
+ |
int i; |
| 76 |
|
COLOR ctmp; |
| 77 |
|
|
| 78 |
|
setcolor(cval, 0.0, 0.0, 0.0); |
| 98 |
|
* Compute specular reflection coefficient using |
| 99 |
|
* gaussian distribution model. |
| 100 |
|
*/ |
| 101 |
< |
/* roughness + source */ |
| 102 |
< |
dtmp = 2.0*np->alpha2 + omega/(2.0*PI); |
| 101 |
> |
/* roughness */ |
| 102 |
> |
dtmp = 2.0*np->alpha2; |
| 103 |
> |
/* + source if flat */ |
| 104 |
> |
if (np->specfl & SP_FLAT) |
| 105 |
> |
dtmp += omega/(2.0*PI); |
| 106 |
|
/* gaussian */ |
| 107 |
|
dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp; |
| 108 |
|
/* worth using? */ |
| 128 |
|
* is always modified by material color. |
| 129 |
|
*/ |
| 130 |
|
/* roughness + source */ |
| 131 |
< |
dtmp = np->alpha2 + omega/(2.0*PI); |
| 131 |
> |
dtmp = np->alpha2/2.0 + omega/(2.0*PI); |
| 132 |
|
/* gaussian */ |
| 133 |
|
dtmp = exp((DOT(np->prdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp; |
| 134 |
|
/* worth using? */ |
| 191 |
|
for (i = 0; i < 3; i++) |
| 192 |
|
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; |
| 193 |
|
nd.rspec += (1.0-nd.rspec)*dtmp; |
| 194 |
+ |
/* check threshold */ |
| 195 |
+ |
if (specthresh > FTINY && |
| 196 |
+ |
((specthresh >= 1.-FTINY || |
| 197 |
+ |
specthresh + (.05 - .1*frandom()) > nd.rspec))) |
| 198 |
+ |
nd.specfl |= SP_RBLT; |
| 199 |
|
/* compute reflected ray */ |
| 200 |
|
for (i = 0; i < 3; i++) |
| 201 |
|
nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; |
| 202 |
+ |
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
| 203 |
+ |
for (i = 0; i < 3; i++) /* safety measure */ |
| 204 |
+ |
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
| 205 |
|
|
| 206 |
|
if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { |
| 207 |
|
RAY lr; |
| 220 |
|
nd.tdiff = nd.trans - nd.tspec; |
| 221 |
|
if (nd.tspec > FTINY) { |
| 222 |
|
nd.specfl |= SP_TRAN; |
| 223 |
+ |
/* check threshold */ |
| 224 |
+ |
if (specthresh > FTINY && |
| 225 |
+ |
((specthresh >= 1.-FTINY || |
| 226 |
+ |
specthresh + |
| 227 |
+ |
(.05 - .1*frandom()) > nd.tspec))) |
| 228 |
+ |
nd.specfl |= SP_TBLT; |
| 229 |
|
if (r->crtype & SHADOW || |
| 230 |
|
DOT(r->pert,r->pert) <= FTINY*FTINY) { |
| 231 |
|
VCOPY(nd.prdir, r->rdir); |
| 233 |
|
} else { |
| 234 |
|
for (i = 0; i < 3; i++) /* perturb */ |
| 235 |
|
nd.prdir[i] = r->rdir[i] - |
| 236 |
< |
.75*r->pert[i]; |
| 237 |
< |
normalize(nd.prdir); |
| 236 |
> |
0.5*r->pert[i]; |
| 237 |
> |
if (DOT(nd.prdir, r->ron) < -FTINY) |
| 238 |
> |
normalize(nd.prdir); /* OK */ |
| 239 |
> |
else |
| 240 |
> |
VCOPY(nd.prdir, r->rdir); |
| 241 |
|
} |
| 242 |
|
} |
| 243 |
|
} else |
| 254 |
|
transtest *= bright(lr.rcol); |
| 255 |
|
transdist = r->rot + lr.rt; |
| 256 |
|
} |
| 257 |
< |
} |
| 257 |
> |
} else |
| 258 |
> |
transtest = 0; |
| 259 |
|
|
| 260 |
|
if (r->crtype & SHADOW) /* the rest is shadow */ |
| 261 |
|
return; |
| 265 |
|
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) |
| 266 |
|
return; /* 100% pure specular */ |
| 267 |
|
|
| 268 |
+ |
if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING) |
| 269 |
+ |
nd.specfl |= SP_FLAT; |
| 270 |
+ |
|
| 271 |
|
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE)) |
| 272 |
|
gaussamp(r, &nd); |
| 273 |
|
|
| 274 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
| 275 |
|
ambient(ctmp, r); |
| 276 |
< |
scalecolor(ctmp, nd.rdiff); |
| 276 |
> |
if (nd.specfl & SP_RBLT) |
| 277 |
> |
scalecolor(ctmp, 1.0-nd.trans); |
| 278 |
> |
else |
| 279 |
> |
scalecolor(ctmp, nd.rdiff); |
| 280 |
|
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
| 281 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
| 282 |
|
} |
| 283 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
| 284 |
|
flipsurface(r); |
| 285 |
|
ambient(ctmp, r); |
| 286 |
< |
scalecolor(ctmp, nd.tdiff); |
| 286 |
> |
if (nd.specfl & SP_TBLT) |
| 287 |
> |
scalecolor(ctmp, nd.trans); |
| 288 |
> |
else |
| 289 |
> |
scalecolor(ctmp, nd.tdiff); |
| 290 |
|
multcolor(ctmp, nd.mcolor); /* modified by color */ |
| 291 |
|
addcolor(r->rcol, ctmp); |
| 292 |
|
flipsurface(r); |
| 308 |
|
FVECT u, v, h; |
| 309 |
|
double rv[2]; |
| 310 |
|
double d, sinp, cosp; |
| 274 |
– |
int confuse; |
| 311 |
|
register int i; |
| 312 |
|
/* set up sample coordinates */ |
| 313 |
|
v[0] = v[1] = v[2] = 0.0; |
| 319 |
|
normalize(u); |
| 320 |
|
fcross(v, np->pnorm, u); |
| 321 |
|
/* compute reflection */ |
| 322 |
< |
if (np->specfl & SP_REFL && |
| 322 |
> |
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
| 323 |
|
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
| 288 |
– |
confuse = 0; |
| 324 |
|
dimlist[ndims++] = (int)np->mp; |
| 325 |
< |
refagain: |
| 291 |
< |
dimlist[ndims] = confuse += 3601; |
| 292 |
< |
d = urand(ilhash(dimlist,ndims+1)+samplendx); |
| 325 |
> |
d = urand(ilhash(dimlist,ndims)+samplendx); |
| 326 |
|
multisamp(rv, 2, d); |
| 327 |
|
d = 2.0*PI * rv[0]; |
| 328 |
|
cosp = cos(d); |
| 329 |
|
sinp = sin(d); |
| 330 |
+ |
rv[1] = 1.0 - specjitter*rv[1]; |
| 331 |
|
if (rv[1] <= FTINY) |
| 332 |
|
d = 1.0; |
| 333 |
|
else |
| 337 |
|
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
| 338 |
|
for (i = 0; i < 3; i++) |
| 339 |
|
sr.rdir[i] = r->rdir[i] + d*h[i]; |
| 340 |
< |
if (DOT(sr.rdir, r->ron) <= FTINY) /* oops! */ |
| 341 |
< |
goto refagain; |
| 340 |
> |
if (DOT(sr.rdir, r->ron) <= FTINY) |
| 341 |
> |
VCOPY(sr.rdir, np->vrefl); /* jitter no good */ |
| 342 |
|
rayvalue(&sr); |
| 343 |
|
multcolor(sr.rcol, np->scolor); |
| 344 |
|
addcolor(r->rcol, sr.rcol); |
| 345 |
|
ndims--; |
| 346 |
|
} |
| 347 |
|
/* compute transmission */ |
| 348 |
+ |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
| 349 |
+ |
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
| 350 |
+ |
dimlist[ndims++] = (int)np->mp; |
| 351 |
+ |
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
| 352 |
+ |
multisamp(rv, 2, d); |
| 353 |
+ |
d = 2.0*PI * rv[0]; |
| 354 |
+ |
cosp = cos(d); |
| 355 |
+ |
sinp = sin(d); |
| 356 |
+ |
rv[1] = 1.0 - specjitter*rv[1]; |
| 357 |
+ |
if (rv[1] <= FTINY) |
| 358 |
+ |
d = 1.0; |
| 359 |
+ |
else |
| 360 |
+ |
d = sqrt( np->alpha2/4.0 * -log(rv[1]) ); |
| 361 |
+ |
for (i = 0; i < 3; i++) |
| 362 |
+ |
sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); |
| 363 |
+ |
if (DOT(sr.rdir, r->ron) < -FTINY) |
| 364 |
+ |
normalize(sr.rdir); /* OK, normalize */ |
| 365 |
+ |
else |
| 366 |
+ |
VCOPY(sr.rdir, np->prdir); /* else no jitter */ |
| 367 |
+ |
rayvalue(&sr); |
| 368 |
+ |
scalecolor(sr.rcol, np->tspec); |
| 369 |
+ |
multcolor(sr.rcol, np->mcolor); /* modified by color */ |
| 370 |
+ |
addcolor(r->rcol, sr.rcol); |
| 371 |
+ |
ndims--; |
| 372 |
+ |
} |
| 373 |
|
} |