--- ray/src/rt/normal.c 1991/05/08 08:27:48 1.9 +++ ray/src/rt/normal.c 1994/12/21 09:51:49 2.28 @@ -1,4 +1,4 @@ -/* Copyright (c) 1991 Regents of the University of California */ +/* Copyright (c) 1992 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; @@ -11,17 +11,25 @@ static char SCCSid[] = "$SunId$ LBL"; * 12/19/85 - added stuff for metals. * 6/26/87 - improved specular model. * 9/28/87 - added model for translucent materials. + * Later changes described in delta comments. */ #include "ray.h" #include "otypes.h" +#include "random.h" + +extern double specthresh; /* specular sampling threshold */ +extern double specjitter; /* specular sampling jitter */ + +extern int backvis; /* back faces visible? */ + +static gaussamp(); + /* - * This routine uses portions of the reflection - * model described by Cook and Torrance. - * The computation of specular components has been simplified by - * numerous approximations and ommisions to improve speed. + * This routine implements the isotropic Gaussian + * model described by Ward in Siggraph `92 article. * We orient the surface towards the incoming ray, so a single * surface can be used to represent an infinitely thin object. * @@ -32,17 +40,23 @@ static char SCCSid[] = "$SunId$ LBL"; * red grn blu rspec rough trans tspec */ -#define BSPEC(m) (6.0) /* specularity parameter b */ + /* specularity flags */ +#define SP_REFL 01 /* has reflected specular component */ +#define SP_TRAN 02 /* has transmitted specular */ +#define SP_PURE 04 /* purely specular (zero roughness) */ +#define SP_FLAT 010 /* flat reflecting surface */ +#define SP_RBLT 020 /* reflection below sample threshold */ +#define SP_TBLT 040 /* transmission below threshold */ -extern double exp(); - typedef struct { OBJREC *mp; /* material pointer */ - RAY *pr; /* intersected ray */ + RAY *rp; /* ray pointer */ + short specfl; /* specularity flags, defined above */ COLOR mcolor; /* color of this material */ COLOR scolor; /* color of specular component */ FVECT vrefl; /* vector in direction of reflected ray */ - double alpha2; /* roughness squared times 2 */ + FVECT prdir; /* vector in transmitted direction */ + double alpha2; /* roughness squared */ double rdiff, rspec; /* reflected specular, diffuse */ double trans; /* transmissivity */ double tdiff, tspec; /* transmitted specular, diffuse */ @@ -58,7 +72,8 @@ FVECT ldir; /* light source direction */ double omega; /* light source size */ { double ldot; - double dtmp; + double dtmp, d2; + FVECT vtmp; COLOR ctmp; setcolor(cval, 0.0, 0.0, 0.0); @@ -79,19 +94,29 @@ double omega; /* light source size */ scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } - if (ldot > FTINY && np->rspec > FTINY && np->alpha2 > FTINY) { + if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) { /* * Compute specular reflection coefficient using * gaussian distribution model. */ - /* roughness + source */ - dtmp = np->alpha2 + omega/(2.0*PI); + /* roughness */ + dtmp = np->alpha2; + /* + source if flat */ + if (np->specfl & SP_FLAT) + dtmp += omega/(4.0*PI); + /* half vector */ + vtmp[0] = ldir[0] - np->rp->rdir[0]; + vtmp[1] = ldir[1] - np->rp->rdir[1]; + vtmp[2] = ldir[2] - np->rp->rdir[2]; + d2 = DOT(vtmp, np->pnorm); + d2 *= d2; + d2 = (DOT(vtmp,vtmp) - d2) / d2; /* gaussian */ - dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp; + dtmp = exp(-d2/dtmp)/(4.*PI*dtmp); /* worth using? */ if (dtmp > FTINY) { copycolor(ctmp, np->scolor); - dtmp *= omega; + dtmp *= omega * sqrt(ldot/np->pdot); scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } @@ -105,78 +130,87 @@ double omega; /* light source size */ scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } - if (ldot < -FTINY && np->tspec > FTINY && np->alpha2 > FTINY) { + if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) { /* * Compute specular transmission. Specular transmission - * is unaffected by material color. + * is always modified by material color. */ /* roughness + source */ - dtmp = np->alpha2 + omega/(2.0*PI); + dtmp = np->alpha2 + omega/PI; /* gaussian */ - dtmp = exp((DOT(np->pr->rdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp; + dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); /* worth using? */ if (dtmp > FTINY) { - dtmp *= np->tspec * omega; - setcolor(ctmp, dtmp, dtmp, dtmp); + copycolor(ctmp, np->mcolor); + dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot); + scalecolor(ctmp, dtmp); addcolor(cval, ctmp); } } } -m_normal(m, r) /* color a ray which hit something normal */ +m_normal(m, r) /* color a ray that hit something normal */ register OBJREC *m; register RAY *r; { NORMDAT nd; double transtest, transdist; - double dtmp; COLOR ctmp; register int i; - - if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) - objerror(m, USER, "bad # arguments"); /* easy shadow test */ if (r->crtype & SHADOW && m->otype != MAT_TRANS) - return; + return(1); + + if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) + objerror(m, USER, "bad number of arguments"); nd.mp = m; - nd.pr = r; + nd.rp = r; /* get material color */ setcolor(nd.mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); /* get roughness */ + nd.specfl = 0; nd.alpha2 = m->oargs.farg[4]; - nd.alpha2 *= 2.0 * nd.alpha2; - /* reorient if necessary */ - if (r->rod < 0.0) - flipsurface(r); + if ((nd.alpha2 *= nd.alpha2) <= FTINY) + nd.specfl |= SP_PURE; + /* check for back side */ + if (r->rod < 0.0) { + if (!backvis && m->otype != MAT_TRANS) { + raytrans(r); + return(1); + } + flipsurface(r); /* reorient if backvis */ + } /* get modifiers */ raytexture(r, m->omod); nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ + if (nd.pdot < .001) + nd.pdot = .001; /* non-zero for dirnorm() */ multcolor(nd.mcolor, r->pcol); /* modify material color */ - r->rt = r->rot; /* default ray length */ transtest = 0; + transdist = r->rot; /* get specular component */ - nd.rspec = m->oargs.farg[3]; - - if (nd.rspec > FTINY) { /* has specular component */ + if ((nd.rspec = m->oargs.farg[3]) > FTINY) { + nd.specfl |= SP_REFL; /* compute specular color */ if (m->otype == MAT_METAL) copycolor(nd.scolor, nd.mcolor); else setcolor(nd.scolor, 1.0, 1.0, 1.0); scalecolor(nd.scolor, nd.rspec); - /* improved model */ - dtmp = exp(-BSPEC(m)*nd.pdot); - for (i = 0; i < 3; i++) - colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; - nd.rspec += (1.0-nd.rspec)*dtmp; + /* check threshold */ + if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY) + nd.specfl |= SP_RBLT; /* compute reflected ray */ for (i = 0; i < 3; i++) nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; + if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ + for (i = 0; i < 3; i++) /* safety measure */ + nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; - if (nd.alpha2 <= FTINY && !(r->crtype & SHADOW)) { + if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { RAY lr; if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) { VCOPY(lr.rdir, nd.vrefl); @@ -191,19 +225,32 @@ register RAY *r; nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec); nd.tspec = nd.trans * m->oargs.farg[6]; nd.tdiff = nd.trans - nd.tspec; + if (nd.tspec > FTINY) { + nd.specfl |= SP_TRAN; + /* check threshold */ + if (!(nd.specfl & SP_PURE) && + specthresh >= nd.tspec-FTINY) + nd.specfl |= SP_TBLT; + if (r->crtype & SHADOW || + DOT(r->pert,r->pert) <= FTINY*FTINY) { + VCOPY(nd.prdir, r->rdir); + transtest = 2; + } else { + for (i = 0; i < 3; i++) /* perturb */ + nd.prdir[i] = r->rdir[i] - r->pert[i]; + if (DOT(nd.prdir, r->ron) < -FTINY) + normalize(nd.prdir); /* OK */ + else + VCOPY(nd.prdir, r->rdir); + } + } } else nd.tdiff = nd.tspec = nd.trans = 0.0; /* transmitted ray */ - if (nd.tspec > FTINY && nd.alpha2 <= FTINY) { + if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) { RAY lr; if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) { - if (DOT(r->pert,r->pert) > FTINY*FTINY) { - for (i = 0; i < 3; i++) /* perturb direction */ - lr.rdir[i] = r->rdir[i] - - .75*r->pert[i]; - normalize(lr.rdir); - } else - transtest = 2; + VCOPY(lr.rdir, nd.prdir); rayvalue(&lr); scalecolor(lr.rcol, nd.tspec); multcolor(lr.rcol, nd.mcolor); /* modified by color */ @@ -211,32 +258,41 @@ register RAY *r; transtest *= bright(lr.rcol); transdist = r->rot + lr.rt; } - } + } else + transtest = 0; + if (r->crtype & SHADOW) /* the rest is shadow */ - return; + return(1); /* diffuse reflection */ nd.rdiff = 1.0 - nd.trans - nd.rspec; - if (nd.rdiff <= FTINY && nd.tdiff <= FTINY && nd.alpha2 <= FTINY) - return; /* purely specular */ + if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) + return(1); /* 100% pure specular */ + if (r->ro != NULL && (r->ro->otype == OBJ_FACE || + r->ro->otype == OBJ_RING)) + nd.specfl |= SP_FLAT; + + if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE)) + gaussamp(r, &nd); + if (nd.rdiff > FTINY) { /* ambient from this side */ ambient(ctmp, r); - if (nd.alpha2 <= FTINY) - scalecolor(ctmp, nd.rdiff); - else + if (nd.specfl & SP_RBLT) scalecolor(ctmp, 1.0-nd.trans); + else + scalecolor(ctmp, nd.rdiff); multcolor(ctmp, nd.mcolor); /* modified by material color */ addcolor(r->rcol, ctmp); /* add to returned color */ } if (nd.tdiff > FTINY) { /* ambient from other side */ flipsurface(r); ambient(ctmp, r); - if (nd.alpha2 <= FTINY) - scalecolor(ctmp, nd.tdiff); - else + if (nd.specfl & SP_TBLT) scalecolor(ctmp, nd.trans); - multcolor(ctmp, nd.mcolor); + else + scalecolor(ctmp, nd.tdiff); + multcolor(ctmp, nd.mcolor); /* modified by color */ addcolor(r->rcol, ctmp); flipsurface(r); } @@ -245,4 +301,84 @@ register RAY *r; /* check distance */ if (transtest > bright(r->rcol)) r->rt = transdist; + + return(1); +} + + +static +gaussamp(r, np) /* sample gaussian specular */ +RAY *r; +register NORMDAT *np; +{ + RAY sr; + FVECT u, v, h; + double rv[2]; + double d, sinp, cosp; + register int i; + /* quick test */ + if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && + (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) + return; + /* set up sample coordinates */ + v[0] = v[1] = v[2] = 0.0; + for (i = 0; i < 3; i++) + if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6) + break; + v[i] = 1.0; + fcross(u, v, np->pnorm); + normalize(u); + fcross(v, np->pnorm, u); + /* compute reflection */ + if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && + rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { + dimlist[ndims++] = (int)np->mp; + d = urand(ilhash(dimlist,ndims)+samplendx); + multisamp(rv, 2, d); + d = 2.0*PI * rv[0]; + cosp = cos(d); + sinp = sin(d); + rv[1] = 1.0 - specjitter*rv[1]; + if (rv[1] <= FTINY) + d = 1.0; + else + d = sqrt( np->alpha2 * -log(rv[1]) ); + for (i = 0; i < 3; i++) + h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); + d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); + for (i = 0; i < 3; i++) + sr.rdir[i] = r->rdir[i] + d*h[i]; + if (DOT(sr.rdir, r->ron) <= FTINY) + VCOPY(sr.rdir, np->vrefl); /* jitter no good */ + rayvalue(&sr); + multcolor(sr.rcol, np->scolor); + addcolor(r->rcol, sr.rcol); + ndims--; + } + /* compute transmission */ + if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && + rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { + dimlist[ndims++] = (int)np->mp; + d = urand(ilhash(dimlist,ndims)+1823+samplendx); + multisamp(rv, 2, d); + d = 2.0*PI * rv[0]; + cosp = cos(d); + sinp = sin(d); + rv[1] = 1.0 - specjitter*rv[1]; + if (rv[1] <= FTINY) + d = 1.0; + else + d = sqrt( -log(rv[1]) * np->alpha2 ); + for (i = 0; i < 3; i++) + sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); + if (DOT(sr.rdir, r->ron) < -FTINY) + normalize(sr.rdir); /* OK, normalize */ + else + VCOPY(sr.rdir, np->prdir); /* else no jitter */ + rayvalue(&sr); + scalecolor(sr.rcol, np->tspec); + multcolor(sr.rcol, np->mcolor); /* modified by color */ + addcolor(r->rcol, sr.rcol); + ndims--; + } }