ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.38
Committed: Sat Feb 22 02:07:29 2003 UTC (21 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.37: +88 -17 lines
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 /* ====================================================================
15 * The Radiance Software License, Version 1.0
16 *
17 * Copyright (c) 1990 - 2002 The Regents of the University of California,
18 * through Lawrence Berkeley National Laboratory. All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * 1. Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 *
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in
29 * the documentation and/or other materials provided with the
30 * distribution.
31 *
32 * 3. The end-user documentation included with the redistribution,
33 * if any, must include the following acknowledgment:
34 * "This product includes Radiance software
35 * (http://radsite.lbl.gov/)
36 * developed by the Lawrence Berkeley National Laboratory
37 * (http://www.lbl.gov/)."
38 * Alternately, this acknowledgment may appear in the software itself,
39 * if and wherever such third-party acknowledgments normally appear.
40 *
41 * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
42 * and "The Regents of the University of California" must
43 * not be used to endorse or promote products derived from this
44 * software without prior written permission. For written
45 * permission, please contact [email protected].
46 *
47 * 5. Products derived from this software may not be called "Radiance",
48 * nor may "Radiance" appear in their name, without prior written
49 * permission of Lawrence Berkeley National Laboratory.
50 *
51 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
52 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
53 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54 * DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
55 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
58 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
59 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
60 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
61 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 * ====================================================================
64 *
65 * This software consists of voluntary contributions made by many
66 * individuals on behalf of Lawrence Berkeley National Laboratory. For more
67 * information on Lawrence Berkeley National Laboratory, please see
68 * <http://www.lbl.gov/>.
69 */
70
71 #include "ray.h"
72
73 #include "otypes.h"
74
75 #include "random.h"
76
77 #ifndef MAXITER
78 #define MAXITER 10 /* maximum # specular ray attempts */
79 #endif
80 /* estimate of Fresnel function */
81 #define FRESNE(ci) (exp(-6.0*(ci)) - 0.00247875217)
82
83 static void gaussamp();
84
85 /*
86 * This routine implements the isotropic Gaussian
87 * model described by Ward in Siggraph `92 article.
88 * We orient the surface towards the incoming ray, so a single
89 * surface can be used to represent an infinitely thin object.
90 *
91 * Arguments for MAT_PLASTIC and MAT_METAL are:
92 * red grn blu specular-frac. facet-slope
93 *
94 * Arguments for MAT_TRANS are:
95 * red grn blu rspec rough trans tspec
96 */
97
98 /* specularity flags */
99 #define SP_REFL 01 /* has reflected specular component */
100 #define SP_TRAN 02 /* has transmitted specular */
101 #define SP_PURE 04 /* purely specular (zero roughness) */
102 #define SP_FLAT 010 /* flat reflecting surface */
103 #define SP_RBLT 020 /* reflection below sample threshold */
104 #define SP_TBLT 040 /* transmission below threshold */
105
106 typedef struct {
107 OBJREC *mp; /* material pointer */
108 RAY *rp; /* ray pointer */
109 short specfl; /* specularity flags, defined above */
110 COLOR mcolor; /* color of this material */
111 COLOR scolor; /* color of specular component */
112 FVECT vrefl; /* vector in direction of reflected ray */
113 FVECT prdir; /* vector in transmitted direction */
114 double alpha2; /* roughness squared */
115 double rdiff, rspec; /* reflected specular, diffuse */
116 double trans; /* transmissivity */
117 double tdiff, tspec; /* transmitted specular, diffuse */
118 FVECT pnorm; /* perturbed surface normal */
119 double pdot; /* perturbed dot product */
120 } NORMDAT; /* normal material data */
121
122
123 static void
124 dirnorm(cval, np, ldir, omega) /* compute source contribution */
125 COLOR cval; /* returned coefficient */
126 register NORMDAT *np; /* material data */
127 FVECT ldir; /* light source direction */
128 double omega; /* light source size */
129 {
130 double ldot;
131 double ldiff;
132 double dtmp, d2;
133 FVECT vtmp;
134 COLOR ctmp;
135
136 setcolor(cval, 0.0, 0.0, 0.0);
137
138 ldot = DOT(np->pnorm, ldir);
139
140 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
141 return; /* wrong side */
142
143 /* Fresnel estimate */
144 ldiff = np->rdiff;
145 if (np->specfl & SP_PURE && (np->rspec > FTINY & ldiff > FTINY))
146 ldiff *= 1. - FRESNE(fabs(ldot));
147
148 if (ldot > FTINY && ldiff > FTINY) {
149 /*
150 * Compute and add diffuse reflected component to returned
151 * color. The diffuse reflected component will always be
152 * modified by the color of the material.
153 */
154 copycolor(ctmp, np->mcolor);
155 dtmp = ldot * omega * ldiff / PI;
156 scalecolor(ctmp, dtmp);
157 addcolor(cval, ctmp);
158 }
159 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
160 /*
161 * Compute specular reflection coefficient using
162 * gaussian distribution model.
163 */
164 /* roughness */
165 dtmp = np->alpha2;
166 /* + source if flat */
167 if (np->specfl & SP_FLAT)
168 dtmp += omega/(4.0*PI);
169 /* half vector */
170 vtmp[0] = ldir[0] - np->rp->rdir[0];
171 vtmp[1] = ldir[1] - np->rp->rdir[1];
172 vtmp[2] = ldir[2] - np->rp->rdir[2];
173 d2 = DOT(vtmp, np->pnorm);
174 d2 *= d2;
175 d2 = (DOT(vtmp,vtmp) - d2) / d2;
176 /* gaussian */
177 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
178 /* worth using? */
179 if (dtmp > FTINY) {
180 copycolor(ctmp, np->scolor);
181 dtmp *= omega * sqrt(ldot/np->pdot);
182 scalecolor(ctmp, dtmp);
183 addcolor(cval, ctmp);
184 }
185 }
186 if (ldot < -FTINY && np->tdiff > FTINY) {
187 /*
188 * Compute diffuse transmission.
189 */
190 copycolor(ctmp, np->mcolor);
191 dtmp = -ldot * omega * np->tdiff / PI;
192 scalecolor(ctmp, dtmp);
193 addcolor(cval, ctmp);
194 }
195 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
196 /*
197 * Compute specular transmission. Specular transmission
198 * is always modified by material color.
199 */
200 /* roughness + source */
201 dtmp = np->alpha2 + omega/PI;
202 /* gaussian */
203 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
204 /* worth using? */
205 if (dtmp > FTINY) {
206 copycolor(ctmp, np->mcolor);
207 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
208 scalecolor(ctmp, dtmp);
209 addcolor(cval, ctmp);
210 }
211 }
212 }
213
214
215 int
216 m_normal(m, r) /* color a ray that hit something normal */
217 register OBJREC *m;
218 register RAY *r;
219 {
220 NORMDAT nd;
221 double fest;
222 double transtest, transdist;
223 double mirtest, mirdist;
224 int hastexture;
225 double d;
226 COLOR ctmp;
227 register int i;
228 /* easy shadow test */
229 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
230 return(1);
231
232 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
233 objerror(m, USER, "bad number of arguments");
234 /* check for back side */
235 if (r->rod < 0.0) {
236 if (!backvis && m->otype != MAT_TRANS) {
237 raytrans(r);
238 return(1);
239 }
240 flipsurface(r); /* reorient if backvis */
241 }
242 nd.mp = m;
243 nd.rp = r;
244 /* get material color */
245 setcolor(nd.mcolor, m->oargs.farg[0],
246 m->oargs.farg[1],
247 m->oargs.farg[2]);
248 /* get roughness */
249 nd.specfl = 0;
250 nd.alpha2 = m->oargs.farg[4];
251 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
252 nd.specfl |= SP_PURE;
253 if (r->ro != NULL && isflat(r->ro->otype))
254 nd.specfl |= SP_FLAT;
255 /* get modifiers */
256 raytexture(r, m->omod);
257 if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY)
258 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
259 else {
260 VCOPY(nd.pnorm, r->ron);
261 nd.pdot = r->rod;
262 }
263 if (nd.pdot < .001)
264 nd.pdot = .001; /* non-zero for dirnorm() */
265 multcolor(nd.mcolor, r->pcol); /* modify material color */
266 mirtest = transtest = 0;
267 mirdist = transdist = r->rot;
268 nd.rspec = m->oargs.farg[3];
269 /* compute Fresnel approx. */
270 if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
271 fest = FRESNE(r->rod);
272 nd.rspec += fest*(1. - nd.rspec);
273 } else
274 fest = 0.;
275 /* compute transmission */
276 if (m->otype == MAT_TRANS) {
277 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
278 nd.tspec = nd.trans * m->oargs.farg[6];
279 nd.tdiff = nd.trans - nd.tspec;
280 if (nd.tspec > FTINY) {
281 nd.specfl |= SP_TRAN;
282 /* check threshold */
283 if (!(nd.specfl & SP_PURE) &&
284 specthresh >= nd.tspec-FTINY)
285 nd.specfl |= SP_TBLT;
286 if (!hastexture || r->crtype & SHADOW) {
287 VCOPY(nd.prdir, r->rdir);
288 transtest = 2;
289 } else {
290 for (i = 0; i < 3; i++) /* perturb */
291 nd.prdir[i] = r->rdir[i] - r->pert[i];
292 if (DOT(nd.prdir, r->ron) < -FTINY)
293 normalize(nd.prdir); /* OK */
294 else
295 VCOPY(nd.prdir, r->rdir);
296 }
297 }
298 } else
299 nd.tdiff = nd.tspec = nd.trans = 0.0;
300 /* transmitted ray */
301 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
302 RAY lr;
303 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
304 VCOPY(lr.rdir, nd.prdir);
305 rayvalue(&lr);
306 scalecolor(lr.rcol, nd.tspec);
307 multcolor(lr.rcol, nd.mcolor); /* modified by color */
308 addcolor(r->rcol, lr.rcol);
309 transtest *= bright(lr.rcol);
310 transdist = r->rot + lr.rt;
311 }
312 } else
313 transtest = 0;
314
315 if (r->crtype & SHADOW) { /* the rest is shadow */
316 r->rt = transdist;
317 return(1);
318 }
319 /* get specular reflection */
320 if (nd.rspec > FTINY) {
321 nd.specfl |= SP_REFL;
322 /* compute specular color */
323 if (m->otype != MAT_METAL) {
324 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
325 } else if (fest > FTINY) {
326 d = nd.rspec*(1. - fest);
327 for (i = 0; i < 3; i++)
328 nd.scolor[i] = fest + nd.mcolor[i]*d;
329 } else {
330 copycolor(nd.scolor, nd.mcolor);
331 scalecolor(nd.scolor, nd.rspec);
332 }
333 /* check threshold */
334 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
335 nd.specfl |= SP_RBLT;
336 /* compute reflected ray */
337 for (i = 0; i < 3; i++)
338 nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
339 /* penetration? */
340 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
341 for (i = 0; i < 3; i++) /* safety measure */
342 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
343 }
344 /* reflected ray */
345 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
346 RAY lr;
347 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
348 VCOPY(lr.rdir, nd.vrefl);
349 rayvalue(&lr);
350 multcolor(lr.rcol, nd.scolor);
351 addcolor(r->rcol, lr.rcol);
352 if (!hastexture && nd.specfl & SP_FLAT) {
353 mirtest = 2.*bright(lr.rcol);
354 mirdist = r->rot + lr.rt;
355 }
356 }
357 }
358 /* diffuse reflection */
359 nd.rdiff = 1.0 - nd.trans - nd.rspec;
360
361 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
362 return(1); /* 100% pure specular */
363
364 if (!(nd.specfl & SP_PURE))
365 gaussamp(r, &nd); /* checks *BLT flags */
366
367 if (nd.rdiff > FTINY) { /* ambient from this side */
368 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
369 if (nd.specfl & SP_RBLT)
370 scalecolor(ctmp, 1.0-nd.trans);
371 else
372 scalecolor(ctmp, nd.rdiff);
373 multcolor(ctmp, nd.mcolor); /* modified by material color */
374 addcolor(r->rcol, ctmp); /* add to returned color */
375 }
376 if (nd.tdiff > FTINY) { /* ambient from other side */
377 flipsurface(r);
378 if (hastexture) {
379 FVECT bnorm;
380 bnorm[0] = -nd.pnorm[0];
381 bnorm[1] = -nd.pnorm[1];
382 bnorm[2] = -nd.pnorm[2];
383 ambient(ctmp, r, bnorm);
384 } else
385 ambient(ctmp, r, r->ron);
386 if (nd.specfl & SP_TBLT)
387 scalecolor(ctmp, nd.trans);
388 else
389 scalecolor(ctmp, nd.tdiff);
390 multcolor(ctmp, nd.mcolor); /* modified by color */
391 addcolor(r->rcol, ctmp);
392 flipsurface(r);
393 }
394 /* add direct component */
395 direct(r, dirnorm, &nd);
396 /* check distance */
397 d = bright(r->rcol);
398 if (transtest > d)
399 r->rt = transdist;
400 else if (mirtest > d)
401 r->rt = mirdist;
402
403 return(1);
404 }
405
406
407 static void
408 gaussamp(r, np) /* sample gaussian specular */
409 RAY *r;
410 register NORMDAT *np;
411 {
412 RAY sr;
413 FVECT u, v, h;
414 double rv[2];
415 double d, sinp, cosp;
416 int niter;
417 register int i;
418 /* quick test */
419 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
420 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
421 return;
422 /* set up sample coordinates */
423 v[0] = v[1] = v[2] = 0.0;
424 for (i = 0; i < 3; i++)
425 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
426 break;
427 v[i] = 1.0;
428 fcross(u, v, np->pnorm);
429 normalize(u);
430 fcross(v, np->pnorm, u);
431 /* compute reflection */
432 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
433 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
434 dimlist[ndims++] = (int)np->mp;
435 for (niter = 0; niter < MAXITER; niter++) {
436 if (niter)
437 d = frandom();
438 else
439 d = urand(ilhash(dimlist,ndims)+samplendx);
440 multisamp(rv, 2, d);
441 d = 2.0*PI * rv[0];
442 cosp = tcos(d);
443 sinp = tsin(d);
444 rv[1] = 1.0 - specjitter*rv[1];
445 if (rv[1] <= FTINY)
446 d = 1.0;
447 else
448 d = sqrt( np->alpha2 * -log(rv[1]) );
449 for (i = 0; i < 3; i++)
450 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
451 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
452 for (i = 0; i < 3; i++)
453 sr.rdir[i] = r->rdir[i] + d*h[i];
454 if (DOT(sr.rdir, r->ron) > FTINY) {
455 rayvalue(&sr);
456 multcolor(sr.rcol, np->scolor);
457 addcolor(r->rcol, sr.rcol);
458 break;
459 }
460 }
461 ndims--;
462 }
463 /* compute transmission */
464 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
465 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
466 dimlist[ndims++] = (int)np->mp;
467 for (niter = 0; niter < MAXITER; niter++) {
468 if (niter)
469 d = frandom();
470 else
471 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
472 multisamp(rv, 2, d);
473 d = 2.0*PI * rv[0];
474 cosp = tcos(d);
475 sinp = tsin(d);
476 rv[1] = 1.0 - specjitter*rv[1];
477 if (rv[1] <= FTINY)
478 d = 1.0;
479 else
480 d = sqrt( np->alpha2 * -log(rv[1]) );
481 for (i = 0; i < 3; i++)
482 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
483 if (DOT(sr.rdir, r->ron) < -FTINY) {
484 normalize(sr.rdir); /* OK, normalize */
485 rayvalue(&sr);
486 scalecolor(sr.rcol, np->tspec);
487 multcolor(sr.rcol, np->mcolor); /* modified */
488 addcolor(r->rcol, sr.rcol);
489 break;
490 }
491 }
492 ndims--;
493 }
494 }