ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.10
Committed: Thu Jan 30 11:37:00 1992 UTC (32 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.9: +2 -4 lines
Log Message:
changed urand() call to frandom() for specular threshold testing

File Contents

# Content
1 /* Copyright (c) 1992 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * normal.c - shading function for normal materials.
9 *
10 * 8/19/85
11 * 12/19/85 - added stuff for metals.
12 * 6/26/87 - improved specular model.
13 * 9/28/87 - added model for translucent materials.
14 * Later changes described in delta comments.
15 */
16
17 #include "ray.h"
18
19 #include "otypes.h"
20
21 #include "random.h"
22
23 extern double specthresh; /* specular sampling threshold */
24 extern double specjitter; /* specular sampling jitter */
25
26 /*
27 * This routine uses portions of the reflection
28 * model described by Cook and Torrance.
29 * The computation of specular components has been simplified by
30 * numerous approximations and ommisions to improve speed.
31 * We orient the surface towards the incoming ray, so a single
32 * surface can be used to represent an infinitely thin object.
33 *
34 * Arguments for MAT_PLASTIC and MAT_METAL are:
35 * red grn blu specular-frac. facet-slope
36 *
37 * Arguments for MAT_TRANS are:
38 * red grn blu rspec rough trans tspec
39 */
40
41 #define BSPEC(m) (6.0) /* specularity parameter b */
42
43 /* specularity flags */
44 #define SP_REFL 01 /* has reflected specular component */
45 #define SP_TRAN 02 /* has transmitted specular */
46 #define SP_PURE 010 /* purely specular (zero roughness) */
47 #define SP_FLAT 020 /* flat reflecting surface */
48 #define SP_RBLT 040 /* reflection below sample threshold */
49 #define SP_TBLT 0100 /* transmission below threshold */
50
51 typedef struct {
52 OBJREC *mp; /* material pointer */
53 short specfl; /* specularity flags, defined above */
54 COLOR mcolor; /* color of this material */
55 COLOR scolor; /* color of specular component */
56 FVECT vrefl; /* vector in direction of reflected ray */
57 FVECT prdir; /* vector in transmitted direction */
58 double alpha2; /* roughness squared */
59 double rdiff, rspec; /* reflected specular, diffuse */
60 double trans; /* transmissivity */
61 double tdiff, tspec; /* transmitted specular, diffuse */
62 FVECT pnorm; /* perturbed surface normal */
63 double pdot; /* perturbed dot product */
64 } NORMDAT; /* normal material data */
65
66
67 dirnorm(cval, np, ldir, omega) /* compute source contribution */
68 COLOR cval; /* returned coefficient */
69 register NORMDAT *np; /* material data */
70 FVECT ldir; /* light source direction */
71 double omega; /* light source size */
72 {
73 double ldot;
74 double dtmp;
75 int i;
76 COLOR ctmp;
77
78 setcolor(cval, 0.0, 0.0, 0.0);
79
80 ldot = DOT(np->pnorm, ldir);
81
82 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
83 return; /* wrong side */
84
85 if (ldot > FTINY && np->rdiff > FTINY) {
86 /*
87 * Compute and add diffuse reflected component to returned
88 * color. The diffuse reflected component will always be
89 * modified by the color of the material.
90 */
91 copycolor(ctmp, np->mcolor);
92 dtmp = ldot * omega * np->rdiff / PI;
93 scalecolor(ctmp, dtmp);
94 addcolor(cval, ctmp);
95 }
96 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
97 /*
98 * Compute specular reflection coefficient using
99 * gaussian distribution model.
100 */
101 /* roughness */
102 dtmp = 2.0*np->alpha2;
103 /* + source if flat */
104 if (np->specfl & SP_FLAT)
105 dtmp += omega/(2.0*PI);
106 /* gaussian */
107 dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
108 /* worth using? */
109 if (dtmp > FTINY) {
110 copycolor(ctmp, np->scolor);
111 dtmp *= omega / np->pdot;
112 scalecolor(ctmp, dtmp);
113 addcolor(cval, ctmp);
114 }
115 }
116 if (ldot < -FTINY && np->tdiff > FTINY) {
117 /*
118 * Compute diffuse transmission.
119 */
120 copycolor(ctmp, np->mcolor);
121 dtmp = -ldot * omega * np->tdiff / PI;
122 scalecolor(ctmp, dtmp);
123 addcolor(cval, ctmp);
124 }
125 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
126 /*
127 * Compute specular transmission. Specular transmission
128 * is always modified by material color.
129 */
130 /* roughness + source */
131 dtmp = np->alpha2/2.0 + omega/(2.0*PI);
132 /* gaussian */
133 dtmp = exp((DOT(np->prdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
134 /* worth using? */
135 if (dtmp > FTINY) {
136 copycolor(ctmp, np->mcolor);
137 dtmp *= np->tspec * omega / np->pdot;
138 scalecolor(ctmp, dtmp);
139 addcolor(cval, ctmp);
140 }
141 }
142 }
143
144
145 m_normal(m, r) /* color a ray that hit something normal */
146 register OBJREC *m;
147 register RAY *r;
148 {
149 NORMDAT nd;
150 double transtest, transdist;
151 double dtmp;
152 COLOR ctmp;
153 register int i;
154 /* easy shadow test */
155 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
156 return;
157
158 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
159 objerror(m, USER, "bad number of arguments");
160 nd.mp = m;
161 /* get material color */
162 setcolor(nd.mcolor, m->oargs.farg[0],
163 m->oargs.farg[1],
164 m->oargs.farg[2]);
165 /* get roughness */
166 nd.specfl = 0;
167 nd.alpha2 = m->oargs.farg[4];
168 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
169 nd.specfl |= SP_PURE;
170 /* reorient if necessary */
171 if (r->rod < 0.0)
172 flipsurface(r);
173 /* get modifiers */
174 raytexture(r, m->omod);
175 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
176 if (nd.pdot < .001)
177 nd.pdot = .001; /* non-zero for dirnorm() */
178 multcolor(nd.mcolor, r->pcol); /* modify material color */
179 transtest = 0;
180 /* get specular component */
181 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
182 nd.specfl |= SP_REFL;
183 /* compute specular color */
184 if (m->otype == MAT_METAL)
185 copycolor(nd.scolor, nd.mcolor);
186 else
187 setcolor(nd.scolor, 1.0, 1.0, 1.0);
188 scalecolor(nd.scolor, nd.rspec);
189 /* improved model */
190 dtmp = exp(-BSPEC(m)*nd.pdot);
191 for (i = 0; i < 3; i++)
192 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
193 nd.rspec += (1.0-nd.rspec)*dtmp;
194 /* check threshold */
195 if (specthresh > FTINY &&
196 ((specthresh >= 1.-FTINY ||
197 specthresh + (.05 - .1*frandom()) > nd.rspec)))
198 nd.specfl |= SP_RBLT;
199 /* compute reflected ray */
200 for (i = 0; i < 3; i++)
201 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
202 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
203 for (i = 0; i < 3; i++) /* safety measure */
204 nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
205
206 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
207 RAY lr;
208 if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
209 VCOPY(lr.rdir, nd.vrefl);
210 rayvalue(&lr);
211 multcolor(lr.rcol, nd.scolor);
212 addcolor(r->rcol, lr.rcol);
213 }
214 }
215 }
216 /* compute transmission */
217 if (m->otype == MAT_TRANS) {
218 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
219 nd.tspec = nd.trans * m->oargs.farg[6];
220 nd.tdiff = nd.trans - nd.tspec;
221 if (nd.tspec > FTINY) {
222 nd.specfl |= SP_TRAN;
223 /* check threshold */
224 if (specthresh > FTINY &&
225 ((specthresh >= 1.-FTINY ||
226 specthresh +
227 (.05 - .1*frandom()) > nd.tspec)))
228 nd.specfl |= SP_TBLT;
229 if (r->crtype & SHADOW ||
230 DOT(r->pert,r->pert) <= FTINY*FTINY) {
231 VCOPY(nd.prdir, r->rdir);
232 transtest = 2;
233 } else {
234 for (i = 0; i < 3; i++) /* perturb */
235 nd.prdir[i] = r->rdir[i] -
236 0.5*r->pert[i];
237 if (DOT(nd.prdir, r->ron) < -FTINY)
238 normalize(nd.prdir); /* OK */
239 else
240 VCOPY(nd.prdir, r->rdir);
241 }
242 }
243 } else
244 nd.tdiff = nd.tspec = nd.trans = 0.0;
245 /* transmitted ray */
246 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
247 RAY lr;
248 if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
249 VCOPY(lr.rdir, nd.prdir);
250 rayvalue(&lr);
251 scalecolor(lr.rcol, nd.tspec);
252 multcolor(lr.rcol, nd.mcolor); /* modified by color */
253 addcolor(r->rcol, lr.rcol);
254 transtest *= bright(lr.rcol);
255 transdist = r->rot + lr.rt;
256 }
257 }
258
259 if (r->crtype & SHADOW) /* the rest is shadow */
260 return;
261 /* diffuse reflection */
262 nd.rdiff = 1.0 - nd.trans - nd.rspec;
263
264 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
265 return; /* 100% pure specular */
266
267 if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING)
268 nd.specfl |= SP_FLAT;
269
270 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
271 gaussamp(r, &nd);
272
273 if (nd.rdiff > FTINY) { /* ambient from this side */
274 ambient(ctmp, r);
275 if (nd.specfl & SP_RBLT)
276 scalecolor(ctmp, 1.0-nd.trans);
277 else
278 scalecolor(ctmp, nd.rdiff);
279 multcolor(ctmp, nd.mcolor); /* modified by material color */
280 addcolor(r->rcol, ctmp); /* add to returned color */
281 }
282 if (nd.tdiff > FTINY) { /* ambient from other side */
283 flipsurface(r);
284 ambient(ctmp, r);
285 if (nd.specfl & SP_TBLT)
286 scalecolor(ctmp, nd.trans);
287 else
288 scalecolor(ctmp, nd.tdiff);
289 multcolor(ctmp, nd.mcolor); /* modified by color */
290 addcolor(r->rcol, ctmp);
291 flipsurface(r);
292 }
293 /* add direct component */
294 direct(r, dirnorm, &nd);
295 /* check distance */
296 if (transtest > bright(r->rcol))
297 r->rt = transdist;
298 }
299
300
301 static
302 gaussamp(r, np) /* sample gaussian specular */
303 RAY *r;
304 register NORMDAT *np;
305 {
306 RAY sr;
307 FVECT u, v, h;
308 double rv[2];
309 double d, sinp, cosp;
310 register int i;
311 /* set up sample coordinates */
312 v[0] = v[1] = v[2] = 0.0;
313 for (i = 0; i < 3; i++)
314 if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
315 break;
316 v[i] = 1.0;
317 fcross(u, v, np->pnorm);
318 normalize(u);
319 fcross(v, np->pnorm, u);
320 /* compute reflection */
321 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
322 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
323 dimlist[ndims++] = (int)np->mp;
324 d = urand(ilhash(dimlist,ndims)+samplendx);
325 multisamp(rv, 2, d);
326 d = 2.0*PI * rv[0];
327 cosp = cos(d);
328 sinp = sin(d);
329 rv[1] = 1.0 - specjitter*rv[1];
330 if (rv[1] <= FTINY)
331 d = 1.0;
332 else
333 d = sqrt( np->alpha2 * -log(rv[1]) );
334 for (i = 0; i < 3; i++)
335 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
336 d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
337 for (i = 0; i < 3; i++)
338 sr.rdir[i] = r->rdir[i] + d*h[i];
339 if (DOT(sr.rdir, r->ron) <= FTINY)
340 VCOPY(sr.rdir, np->vrefl); /* jitter no good */
341 rayvalue(&sr);
342 multcolor(sr.rcol, np->scolor);
343 addcolor(r->rcol, sr.rcol);
344 ndims--;
345 }
346 /* compute transmission */
347 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
348 rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
349 dimlist[ndims++] = (int)np->mp;
350 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
351 multisamp(rv, 2, d);
352 d = 2.0*PI * rv[0];
353 cosp = cos(d);
354 sinp = sin(d);
355 rv[1] = 1.0 - specjitter*rv[1];
356 if (rv[1] <= FTINY)
357 d = 1.0;
358 else
359 d = sqrt( np->alpha2/4.0 * -log(rv[1]) );
360 for (i = 0; i < 3; i++)
361 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
362 if (DOT(sr.rdir, r->ron) < -FTINY)
363 normalize(sr.rdir); /* OK, normalize */
364 else
365 VCOPY(sr.rdir, np->prdir); /* else no jitter */
366 rayvalue(&sr);
367 multcolor(sr.rcol, np->scolor);
368 addcolor(r->rcol, sr.rcol);
369 ndims--;
370 }
371 }