ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.77
Committed: Tue Nov 13 19:58:33 2018 UTC (5 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.76: +9 -29 lines
Log Message:
Added -orRxX options to rtrace for VR rendering

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.76 2018/01/10 04:08:50 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22 #include "pmapmat.h"
23
24 #ifndef MAXITER
25 #define MAXITER 10 /* maximum # specular ray attempts */
26 #endif
27 /* estimate of Fresnel function */
28 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
29 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
30
31
32 /*
33 * This routine implements the isotropic Gaussian
34 * model described by Ward in Siggraph `92 article.
35 * We orient the surface towards the incoming ray, so a single
36 * surface can be used to represent an infinitely thin object.
37 *
38 * Arguments for MAT_PLASTIC and MAT_METAL are:
39 * red grn blu specular-frac. facet-slope
40 *
41 * Arguments for MAT_TRANS are:
42 * red grn blu rspec rough trans tspec
43 */
44
45 /* specularity flags */
46 #define SP_REFL 01 /* has reflected specular component */
47 #define SP_TRAN 02 /* has transmitted specular */
48 #define SP_PURE 04 /* purely specular (zero roughness) */
49 #define SP_FLAT 010 /* flat reflecting surface */
50 #define SP_RBLT 020 /* reflection below sample threshold */
51 #define SP_TBLT 040 /* transmission below threshold */
52
53 typedef struct {
54 OBJREC *mp; /* material pointer */
55 RAY *rp; /* ray pointer */
56 short specfl; /* specularity flags, defined above */
57 COLOR mcolor; /* color of this material */
58 COLOR scolor; /* color of specular component */
59 FVECT vrefl; /* vector in direction of reflected ray */
60 FVECT prdir; /* vector in transmitted direction */
61 double alpha2; /* roughness squared */
62 double rdiff, rspec; /* reflected specular, diffuse */
63 double trans; /* transmissivity */
64 double tdiff, tspec; /* transmitted specular, diffuse */
65 FVECT pnorm; /* perturbed surface normal */
66 double pdot; /* perturbed dot product */
67 } NORMDAT; /* normal material data */
68
69 static void gaussamp(NORMDAT *np);
70
71
72 static void
73 dirnorm( /* compute source contribution */
74 COLOR cval, /* returned coefficient */
75 void *nnp, /* material data */
76 FVECT ldir, /* light source direction */
77 double omega /* light source size */
78 )
79 {
80 NORMDAT *np = nnp;
81 double ldot;
82 double lrdiff, ltdiff;
83 double dtmp, d2, d3, d4;
84 FVECT vtmp;
85 COLOR ctmp;
86
87 setcolor(cval, 0.0, 0.0, 0.0);
88
89 ldot = DOT(np->pnorm, ldir);
90
91 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
92 return; /* wrong side */
93
94 /* Fresnel estimate */
95 lrdiff = np->rdiff;
96 ltdiff = np->tdiff;
97 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
98 (lrdiff > FTINY) | (ltdiff > FTINY)) {
99 dtmp = 1. - FRESNE(fabs(ldot));
100 lrdiff *= dtmp;
101 ltdiff *= dtmp;
102 }
103
104 if (ldot > FTINY && lrdiff > FTINY) {
105 /*
106 * Compute and add diffuse reflected component to returned
107 * color. The diffuse reflected component will always be
108 * modified by the color of the material.
109 */
110 copycolor(ctmp, np->mcolor);
111 dtmp = ldot * omega * lrdiff * (1.0/PI);
112 scalecolor(ctmp, dtmp);
113 addcolor(cval, ctmp);
114 }
115
116 if (ldot < -FTINY && ltdiff > FTINY) {
117 /*
118 * Compute diffuse transmission.
119 */
120 copycolor(ctmp, np->mcolor);
121 dtmp = -ldot * omega * ltdiff * (1.0/PI);
122 scalecolor(ctmp, dtmp);
123 addcolor(cval, ctmp);
124 }
125
126 if (ambRayInPmap(np->rp))
127 return; /* specular already in photon map */
128
129 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
130 /*
131 * Compute specular reflection coefficient using
132 * Gaussian distribution model.
133 */
134 /* roughness */
135 dtmp = np->alpha2;
136 /* + source if flat */
137 if (np->specfl & SP_FLAT)
138 dtmp += omega * (0.25/PI);
139 /* half vector */
140 VSUB(vtmp, ldir, np->rp->rdir);
141 d2 = DOT(vtmp, np->pnorm);
142 d2 *= d2;
143 d3 = DOT(vtmp,vtmp);
144 d4 = (d3 - d2) / d2;
145 /* new W-G-M-D model */
146 dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
147 /* worth using? */
148 if (dtmp > FTINY) {
149 copycolor(ctmp, np->scolor);
150 dtmp *= ldot * omega;
151 scalecolor(ctmp, dtmp);
152 addcolor(cval, ctmp);
153 }
154 }
155
156
157 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
158 /*
159 * Compute specular transmission. Specular transmission
160 * is always modified by material color.
161 */
162 /* roughness + source */
163 dtmp = np->alpha2 + omega*(1.0/PI);
164 /* Gaussian */
165 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
166 /* worth using? */
167 if (dtmp > FTINY) {
168 copycolor(ctmp, np->mcolor);
169 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
170 scalecolor(ctmp, dtmp);
171 addcolor(cval, ctmp);
172 }
173 }
174 }
175
176
177 int
178 m_normal( /* color a ray that hit something normal */
179 OBJREC *m,
180 RAY *r
181 )
182 {
183 NORMDAT nd;
184 double fest;
185 int hastexture;
186 double d;
187 COLOR ctmp;
188 int i;
189
190 /* PMAP: skip transmitted shadow ray if accounted for in photon map */
191 /* No longer needed?
192 if (shadowRayInPmap(r) || ambRayInPmap(r))
193 return(1); */
194
195 /* easy shadow test */
196 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
197 return(1);
198
199 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
200 objerror(m, USER, "bad number of arguments");
201 /* check for back side */
202 if (r->rod < 0.0) {
203 if (!backvis) {
204 raytrans(r);
205 return(1);
206 }
207 raytexture(r, m->omod);
208 flipsurface(r); /* reorient if backvis */
209 } else
210 raytexture(r, m->omod);
211 nd.mp = m;
212 nd.rp = r;
213 /* get material color */
214 setcolor(nd.mcolor, m->oargs.farg[0],
215 m->oargs.farg[1],
216 m->oargs.farg[2]);
217 /* get roughness */
218 nd.specfl = 0;
219 nd.alpha2 = m->oargs.farg[4];
220 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
221 nd.specfl |= SP_PURE;
222
223 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
224 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
225 } else {
226 VCOPY(nd.pnorm, r->ron);
227 nd.pdot = r->rod;
228 }
229 if (r->ro != NULL && isflat(r->ro->otype))
230 nd.specfl |= SP_FLAT;
231 if (nd.pdot < .001)
232 nd.pdot = .001; /* non-zero for dirnorm() */
233 multcolor(nd.mcolor, r->pcol); /* modify material color */
234 nd.rspec = m->oargs.farg[3];
235 /* compute Fresnel approx. */
236 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
237 fest = FRESNE(nd.pdot);
238 nd.rspec += fest*(1. - nd.rspec);
239 } else
240 fest = 0.;
241 /* compute transmission */
242 if (m->otype == MAT_TRANS) {
243 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
244 nd.tspec = nd.trans * m->oargs.farg[6];
245 nd.tdiff = nd.trans - nd.tspec;
246 if (nd.tspec > FTINY) {
247 nd.specfl |= SP_TRAN;
248 /* check threshold */
249 if (!(nd.specfl & SP_PURE) &&
250 specthresh >= nd.tspec-FTINY)
251 nd.specfl |= SP_TBLT;
252 if (!hastexture || r->crtype & (SHADOW|AMBIENT)) {
253 VCOPY(nd.prdir, r->rdir);
254 } else {
255 /* perturb */
256 VSUB(nd.prdir, r->rdir, r->pert);
257 if (DOT(nd.prdir, r->ron) < -FTINY)
258 normalize(nd.prdir); /* OK */
259 else
260 VCOPY(nd.prdir, r->rdir);
261 }
262 }
263 } else
264 nd.tdiff = nd.tspec = nd.trans = 0.0;
265 /* transmitted ray */
266
267 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
268 RAY lr;
269 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
270 scalecolor(lr.rcoef, nd.tspec);
271 if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
272 VCOPY(lr.rdir, nd.prdir);
273 rayvalue(&lr);
274 multcolor(lr.rcol, lr.rcoef);
275 addcolor(r->rcol, lr.rcol);
276 r->rxt = r->rot + raydistance(&lr);
277 }
278 }
279
280 if (r->crtype & SHADOW) /* the rest is shadow */
281 return(1);
282 /* get specular reflection */
283 if (nd.rspec > FTINY) {
284 nd.specfl |= SP_REFL;
285 /* compute specular color */
286 if (m->otype != MAT_METAL) {
287 setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
288 } else if (fest > FTINY) {
289 d = m->oargs.farg[3]*(1. - fest);
290 for (i = 0; i < 3; i++)
291 colval(nd.scolor,i) = fest +
292 colval(nd.mcolor,i)*d;
293 } else {
294 copycolor(nd.scolor, nd.mcolor);
295 scalecolor(nd.scolor, nd.rspec);
296 }
297 /* check threshold */
298 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
299 nd.specfl |= SP_RBLT;
300 /* compute reflected ray */
301 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot);
302 /* penetration? */
303 if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
304 VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod);
305 checknorm(nd.vrefl);
306 }
307 /* reflected ray */
308 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
309 RAY lr;
310 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
311 VCOPY(lr.rdir, nd.vrefl);
312 rayvalue(&lr);
313 multcolor(lr.rcol, lr.rcoef);
314 copycolor(r->mcol, lr.rcol);
315 addcolor(r->rcol, lr.rcol);
316 if (nd.specfl & SP_FLAT &&
317 !hastexture | (r->crtype & AMBIENT))
318 r->rmt = r->rot + raydistance(&lr);
319 }
320 }
321 /* diffuse reflection */
322 nd.rdiff = 1.0 - nd.trans - nd.rspec;
323
324 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
325 return(1); /* 100% pure specular */
326
327 if (!(nd.specfl & SP_PURE))
328 gaussamp(&nd); /* checks *BLT flags */
329
330 if (nd.rdiff > FTINY) { /* ambient from this side */
331 copycolor(ctmp, nd.mcolor); /* modified by material color */
332 scalecolor(ctmp, nd.rdiff);
333 if (nd.specfl & SP_RBLT) /* add in specular as well? */
334 addcolor(ctmp, nd.scolor);
335 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
336 addcolor(r->rcol, ctmp); /* add to returned color */
337 }
338 if (nd.tdiff > FTINY) { /* ambient from other side */
339 copycolor(ctmp, nd.mcolor); /* modified by color */
340 if (nd.specfl & SP_TBLT)
341 scalecolor(ctmp, nd.trans);
342 else
343 scalecolor(ctmp, nd.tdiff);
344 flipsurface(r);
345 if (hastexture) {
346 FVECT bnorm;
347 bnorm[0] = -nd.pnorm[0];
348 bnorm[1] = -nd.pnorm[1];
349 bnorm[2] = -nd.pnorm[2];
350 multambient(ctmp, r, bnorm);
351 } else
352 multambient(ctmp, r, r->ron);
353 addcolor(r->rcol, ctmp);
354 flipsurface(r);
355 }
356 /* add direct component */
357 direct(r, dirnorm, &nd);
358
359 return(1);
360 }
361
362
363 static void
364 gaussamp( /* sample Gaussian specular */
365 NORMDAT *np
366 )
367 {
368 RAY sr;
369 FVECT u, v, h;
370 double rv[2];
371 double d, sinp, cosp;
372 COLOR scol;
373 int maxiter, ntrials, nstarget, nstaken;
374 int i;
375 /* quick test */
376 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
377 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
378 return;
379 /* set up sample coordinates */
380 getperpendicular(u, np->pnorm, rand_samp);
381 fcross(v, np->pnorm, u);
382 /* compute reflection */
383 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
384 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
385 nstarget = 1;
386 if (specjitter > 1.5) { /* multiple samples? */
387 nstarget = specjitter*np->rp->rweight + .5;
388 if (sr.rweight <= minweight*nstarget)
389 nstarget = sr.rweight/minweight;
390 if (nstarget > 1) {
391 d = 1./nstarget;
392 scalecolor(sr.rcoef, d);
393 sr.rweight *= d;
394 } else
395 nstarget = 1;
396 }
397 setcolor(scol, 0., 0., 0.);
398 dimlist[ndims++] = (int)(size_t)np->mp;
399 maxiter = MAXITER*nstarget;
400 for (nstaken = ntrials = 0; nstaken < nstarget &&
401 ntrials < maxiter; ntrials++) {
402 if (ntrials)
403 d = frandom();
404 else
405 d = urand(ilhash(dimlist,ndims)+samplendx);
406 multisamp(rv, 2, d);
407 d = 2.0*PI * rv[0];
408 cosp = tcos(d);
409 sinp = tsin(d);
410 if ((0. <= specjitter) & (specjitter < 1.))
411 rv[1] = 1.0 - specjitter*rv[1];
412 if (rv[1] <= FTINY)
413 d = 1.0;
414 else
415 d = sqrt( np->alpha2 * -log(rv[1]) );
416 for (i = 0; i < 3; i++)
417 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
418 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
419 VSUM(sr.rdir, np->rp->rdir, h, d);
420 /* sample rejection test */
421 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
422 continue;
423 checknorm(sr.rdir);
424 if (nstarget > 1) { /* W-G-M-D adjustment */
425 if (nstaken) rayclear(&sr);
426 rayvalue(&sr);
427 d = 2./(1. + np->rp->rod/d);
428 scalecolor(sr.rcol, d);
429 addcolor(scol, sr.rcol);
430 } else {
431 rayvalue(&sr);
432 multcolor(sr.rcol, sr.rcoef);
433 addcolor(np->rp->rcol, sr.rcol);
434 }
435 ++nstaken;
436 }
437 if (nstarget > 1) { /* final W-G-M-D weighting */
438 multcolor(scol, sr.rcoef);
439 d = (double)nstarget/ntrials;
440 scalecolor(scol, d);
441 addcolor(np->rp->rcol, scol);
442 }
443 ndims--;
444 }
445 /* compute transmission */
446 copycolor(sr.rcoef, np->mcolor); /* modified by color */
447 scalecolor(sr.rcoef, np->tspec);
448 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
449 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
450 nstarget = 1;
451 if (specjitter > 1.5) { /* multiple samples? */
452 nstarget = specjitter*np->rp->rweight + .5;
453 if (sr.rweight <= minweight*nstarget)
454 nstarget = sr.rweight/minweight;
455 if (nstarget > 1) {
456 d = 1./nstarget;
457 scalecolor(sr.rcoef, d);
458 sr.rweight *= d;
459 } else
460 nstarget = 1;
461 }
462 dimlist[ndims++] = (int)(size_t)np->mp;
463 maxiter = MAXITER*nstarget;
464 for (nstaken = ntrials = 0; nstaken < nstarget &&
465 ntrials < maxiter; ntrials++) {
466 if (ntrials)
467 d = frandom();
468 else
469 d = urand(ilhash(dimlist,ndims)+samplendx);
470 multisamp(rv, 2, d);
471 d = 2.0*PI * rv[0];
472 cosp = tcos(d);
473 sinp = tsin(d);
474 if ((0. <= specjitter) & (specjitter < 1.))
475 rv[1] = 1.0 - specjitter*rv[1];
476 if (rv[1] <= FTINY)
477 d = 1.0;
478 else
479 d = sqrt( np->alpha2 * -log(rv[1]) );
480 for (i = 0; i < 3; i++)
481 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
482 /* sample rejection test */
483 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
484 continue;
485 normalize(sr.rdir); /* OK, normalize */
486 if (nstaken) /* multi-sampling */
487 rayclear(&sr);
488 rayvalue(&sr);
489 multcolor(sr.rcol, sr.rcoef);
490 addcolor(np->rp->rcol, sr.rcol);
491 ++nstaken;
492 }
493 ndims--;
494 }
495 }