| 20 |
|
|
| 21 |
|
#include "random.h" |
| 22 |
|
|
| 23 |
+ |
extern double specthresh; /* specular sampling threshold */ |
| 24 |
+ |
extern double specjitter; /* specular sampling jitter */ |
| 25 |
+ |
|
| 26 |
|
/* |
| 27 |
|
* This routine uses portions of the reflection |
| 28 |
|
* model described by Cook and Torrance. |
| 45 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
| 46 |
|
#define SP_PURE 010 /* purely specular (zero roughness) */ |
| 47 |
|
#define SP_FLAT 020 /* flat reflecting surface */ |
| 48 |
+ |
#define SP_RBLT 040 /* reflection below sample threshold */ |
| 49 |
+ |
#define SP_TBLT 0100 /* transmission below threshold */ |
| 50 |
|
|
| 51 |
|
typedef struct { |
| 52 |
|
OBJREC *mp; /* material pointer */ |
| 191 |
|
for (i = 0; i < 3; i++) |
| 192 |
|
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; |
| 193 |
|
nd.rspec += (1.0-nd.rspec)*dtmp; |
| 194 |
+ |
/* check threshold */ |
| 195 |
+ |
if (specthresh > FTINY && |
| 196 |
+ |
((specthresh >= 1.-FTINY || |
| 197 |
+ |
specthresh + (.1 - .2*urand(8199+samplendx)) |
| 198 |
+ |
> nd.rspec))) |
| 199 |
+ |
nd.specfl |= SP_RBLT; |
| 200 |
|
/* compute reflected ray */ |
| 201 |
|
for (i = 0; i < 3; i++) |
| 202 |
|
nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i]; |
| 203 |
+ |
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */ |
| 204 |
+ |
for (i = 0; i < 3; i++) /* safety measure */ |
| 205 |
+ |
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
| 206 |
|
|
| 207 |
|
if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) { |
| 208 |
|
RAY lr; |
| 221 |
|
nd.tdiff = nd.trans - nd.tspec; |
| 222 |
|
if (nd.tspec > FTINY) { |
| 223 |
|
nd.specfl |= SP_TRAN; |
| 224 |
+ |
/* check threshold */ |
| 225 |
+ |
if (specthresh > FTINY && |
| 226 |
+ |
((specthresh >= 1.-FTINY || |
| 227 |
+ |
specthresh + |
| 228 |
+ |
(.1 - .2*urand(7241+samplendx)) |
| 229 |
+ |
> nd.tspec))) |
| 230 |
+ |
nd.specfl |= SP_TBLT; |
| 231 |
|
if (r->crtype & SHADOW || |
| 232 |
|
DOT(r->pert,r->pert) <= FTINY*FTINY) { |
| 233 |
|
VCOPY(nd.prdir, r->rdir); |
| 236 |
|
for (i = 0; i < 3; i++) /* perturb */ |
| 237 |
|
nd.prdir[i] = r->rdir[i] - |
| 238 |
|
.75*r->pert[i]; |
| 239 |
< |
normalize(nd.prdir); |
| 239 |
> |
if (DOT(nd.prdir, r->ron) < -FTINY) |
| 240 |
> |
normalize(nd.prdir); /* OK */ |
| 241 |
> |
else |
| 242 |
> |
VCOPY(nd.prdir, r->rdir); |
| 243 |
|
} |
| 244 |
|
} |
| 245 |
|
} else |
| 274 |
|
|
| 275 |
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
| 276 |
|
ambient(ctmp, r); |
| 277 |
< |
scalecolor(ctmp, nd.rdiff); |
| 277 |
> |
if (nd.specfl & SP_RBLT) |
| 278 |
> |
scalecolor(ctmp, 1.0-nd.trans); |
| 279 |
> |
else |
| 280 |
> |
scalecolor(ctmp, nd.rdiff); |
| 281 |
|
multcolor(ctmp, nd.mcolor); /* modified by material color */ |
| 282 |
|
addcolor(r->rcol, ctmp); /* add to returned color */ |
| 283 |
|
} |
| 284 |
|
if (nd.tdiff > FTINY) { /* ambient from other side */ |
| 285 |
|
flipsurface(r); |
| 286 |
|
ambient(ctmp, r); |
| 287 |
< |
scalecolor(ctmp, nd.tdiff); |
| 287 |
> |
if (nd.specfl & SP_TBLT) |
| 288 |
> |
scalecolor(ctmp, nd.trans); |
| 289 |
> |
else |
| 290 |
> |
scalecolor(ctmp, nd.tdiff); |
| 291 |
|
multcolor(ctmp, nd.mcolor); /* modified by color */ |
| 292 |
|
addcolor(r->rcol, ctmp); |
| 293 |
|
flipsurface(r); |
| 309 |
|
FVECT u, v, h; |
| 310 |
|
double rv[2]; |
| 311 |
|
double d, sinp, cosp; |
| 282 |
– |
int ntries; |
| 312 |
|
register int i; |
| 313 |
|
/* set up sample coordinates */ |
| 314 |
|
v[0] = v[1] = v[2] = 0.0; |
| 320 |
|
normalize(u); |
| 321 |
|
fcross(v, np->pnorm, u); |
| 322 |
|
/* compute reflection */ |
| 323 |
< |
if (np->specfl & SP_REFL && |
| 323 |
> |
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
| 324 |
|
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) { |
| 325 |
|
dimlist[ndims++] = (int)np->mp; |
| 326 |
< |
for (ntries = 0; ntries < 10; ntries++) { |
| 327 |
< |
dimlist[ndims] = ntries * 8912; |
| 328 |
< |
d = urand(ilhash(dimlist,ndims+1)+samplendx); |
| 329 |
< |
multisamp(rv, 2, d); |
| 330 |
< |
d = 2.0*PI * rv[0]; |
| 331 |
< |
cosp = cos(d); |
| 332 |
< |
sinp = sin(d); |
| 333 |
< |
if (rv[1] <= FTINY) |
| 334 |
< |
d = 1.0; |
| 335 |
< |
else |
| 336 |
< |
d = sqrt( np->alpha2 * -log(rv[1]) ); |
| 337 |
< |
for (i = 0; i < 3; i++) |
| 338 |
< |
h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); |
| 339 |
< |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
| 340 |
< |
for (i = 0; i < 3; i++) |
| 341 |
< |
sr.rdir[i] = r->rdir[i] + d*h[i]; |
| 342 |
< |
if (DOT(sr.rdir, r->ron) > FTINY) { |
| 343 |
< |
rayvalue(&sr); |
| 344 |
< |
multcolor(sr.rcol, np->scolor); |
| 345 |
< |
addcolor(r->rcol, sr.rcol); |
| 317 |
< |
break; |
| 318 |
< |
} |
| 319 |
< |
} |
| 326 |
> |
d = urand(ilhash(dimlist,ndims)+samplendx); |
| 327 |
> |
multisamp(rv, 2, d); |
| 328 |
> |
d = 2.0*PI * rv[0]; |
| 329 |
> |
cosp = cos(d); |
| 330 |
> |
sinp = sin(d); |
| 331 |
> |
rv[1] = 1.0 - specjitter*rv[1]; |
| 332 |
> |
if (rv[1] <= FTINY) |
| 333 |
> |
d = 1.0; |
| 334 |
> |
else |
| 335 |
> |
d = sqrt( np->alpha2 * -log(rv[1]) ); |
| 336 |
> |
for (i = 0; i < 3; i++) |
| 337 |
> |
h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]); |
| 338 |
> |
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d); |
| 339 |
> |
for (i = 0; i < 3; i++) |
| 340 |
> |
sr.rdir[i] = r->rdir[i] + d*h[i]; |
| 341 |
> |
if (DOT(sr.rdir, r->ron) <= FTINY) |
| 342 |
> |
VCOPY(sr.rdir, np->vrefl); /* jitter no good */ |
| 343 |
> |
rayvalue(&sr); |
| 344 |
> |
multcolor(sr.rcol, np->scolor); |
| 345 |
> |
addcolor(r->rcol, sr.rcol); |
| 346 |
|
ndims--; |
| 347 |
|
} |
| 348 |
|
/* compute transmission */ |