| 23 |
|
extern double specthresh; /* specular sampling threshold */ |
| 24 |
|
extern double specjitter; /* specular sampling jitter */ |
| 25 |
|
|
| 26 |
+ |
static gaussamp(); |
| 27 |
+ |
|
| 28 |
|
/* |
| 29 |
< |
* This routine uses portions of the reflection |
| 30 |
< |
* model described by Cook and Torrance. |
| 29 |
< |
* The computation of specular components has been simplified by |
| 30 |
< |
* numerous approximations and ommisions to improve speed. |
| 29 |
> |
* This routine implements the isotropic Gaussian |
| 30 |
> |
* model described by Ward in Siggraph `92 article. |
| 31 |
|
* We orient the surface towards the incoming ray, so a single |
| 32 |
|
* surface can be used to represent an infinitely thin object. |
| 33 |
|
* |
| 38 |
|
* red grn blu rspec rough trans tspec |
| 39 |
|
*/ |
| 40 |
|
|
| 41 |
– |
#define BSPEC(m) (6.0) /* specularity parameter b */ |
| 42 |
– |
|
| 41 |
|
/* specularity flags */ |
| 42 |
|
#define SP_REFL 01 /* has reflected specular component */ |
| 43 |
|
#define SP_TRAN 02 /* has transmitted specular */ |
| 44 |
< |
#define SP_PURE 010 /* purely specular (zero roughness) */ |
| 45 |
< |
#define SP_FLAT 020 /* flat reflecting surface */ |
| 46 |
< |
#define SP_RBLT 040 /* reflection below sample threshold */ |
| 47 |
< |
#define SP_TBLT 0100 /* transmission below threshold */ |
| 44 |
> |
#define SP_PURE 04 /* purely specular (zero roughness) */ |
| 45 |
> |
#define SP_FLAT 010 /* flat reflecting surface */ |
| 46 |
> |
#define SP_RBLT 020 /* reflection below sample threshold */ |
| 47 |
> |
#define SP_TBLT 040 /* transmission below threshold */ |
| 48 |
|
|
| 49 |
|
typedef struct { |
| 50 |
|
OBJREC *mp; /* material pointer */ |
| 51 |
+ |
RAY *rp; /* ray pointer */ |
| 52 |
|
short specfl; /* specularity flags, defined above */ |
| 53 |
|
COLOR mcolor; /* color of this material */ |
| 54 |
|
COLOR scolor; /* color of specular component */ |
| 70 |
|
double omega; /* light source size */ |
| 71 |
|
{ |
| 72 |
|
double ldot; |
| 73 |
< |
double dtmp; |
| 74 |
< |
int i; |
| 73 |
> |
double dtmp, d2; |
| 74 |
> |
FVECT vtmp; |
| 75 |
|
COLOR ctmp; |
| 76 |
|
|
| 77 |
|
setcolor(cval, 0.0, 0.0, 0.0); |
| 98 |
|
* gaussian distribution model. |
| 99 |
|
*/ |
| 100 |
|
/* roughness */ |
| 101 |
< |
dtmp = 2.0*np->alpha2; |
| 101 |
> |
dtmp = np->alpha2; |
| 102 |
|
/* + source if flat */ |
| 103 |
|
if (np->specfl & SP_FLAT) |
| 104 |
< |
dtmp += omega/(2.0*PI); |
| 104 |
> |
dtmp += omega/(4.0*PI); |
| 105 |
> |
/* half vector */ |
| 106 |
> |
vtmp[0] = ldir[0] - np->rp->rdir[0]; |
| 107 |
> |
vtmp[1] = ldir[1] - np->rp->rdir[1]; |
| 108 |
> |
vtmp[2] = ldir[2] - np->rp->rdir[2]; |
| 109 |
> |
d2 = DOT(vtmp, np->pnorm); |
| 110 |
> |
d2 *= d2; |
| 111 |
> |
d2 = (DOT(vtmp,vtmp) - d2) / d2; |
| 112 |
|
/* gaussian */ |
| 113 |
< |
dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp; |
| 113 |
> |
dtmp = exp(-d2/dtmp)/(4.*PI*dtmp); |
| 114 |
|
/* worth using? */ |
| 115 |
|
if (dtmp > FTINY) { |
| 116 |
|
copycolor(ctmp, np->scolor); |
| 117 |
< |
dtmp *= omega / np->pdot; |
| 117 |
> |
dtmp *= omega * sqrt(ldot/np->pdot); |
| 118 |
|
scalecolor(ctmp, dtmp); |
| 119 |
|
addcolor(cval, ctmp); |
| 120 |
|
} |
| 134 |
|
* is always modified by material color. |
| 135 |
|
*/ |
| 136 |
|
/* roughness + source */ |
| 137 |
< |
dtmp = np->alpha2 + omega/(2.0*PI); |
| 137 |
> |
dtmp = np->alpha2 + omega/PI; |
| 138 |
|
/* gaussian */ |
| 139 |
< |
dtmp = exp((DOT(np->prdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp; |
| 139 |
> |
dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp); |
| 140 |
|
/* worth using? */ |
| 141 |
|
if (dtmp > FTINY) { |
| 142 |
|
copycolor(ctmp, np->mcolor); |
| 143 |
< |
dtmp *= np->tspec * omega / np->pdot; |
| 143 |
> |
dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot); |
| 144 |
|
scalecolor(ctmp, dtmp); |
| 145 |
|
addcolor(cval, ctmp); |
| 146 |
|
} |
| 154 |
|
{ |
| 155 |
|
NORMDAT nd; |
| 156 |
|
double transtest, transdist; |
| 151 |
– |
double dtmp; |
| 157 |
|
COLOR ctmp; |
| 158 |
|
register int i; |
| 159 |
|
/* easy shadow test */ |
| 160 |
|
if (r->crtype & SHADOW && m->otype != MAT_TRANS) |
| 161 |
< |
return; |
| 161 |
> |
return(1); |
| 162 |
|
|
| 163 |
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5)) |
| 164 |
|
objerror(m, USER, "bad number of arguments"); |
| 165 |
|
nd.mp = m; |
| 166 |
+ |
nd.rp = r; |
| 167 |
|
/* get material color */ |
| 168 |
|
setcolor(nd.mcolor, m->oargs.farg[0], |
| 169 |
|
m->oargs.farg[1], |
| 183 |
|
nd.pdot = .001; /* non-zero for dirnorm() */ |
| 184 |
|
multcolor(nd.mcolor, r->pcol); /* modify material color */ |
| 185 |
|
transtest = 0; |
| 186 |
+ |
transdist = r->rot; |
| 187 |
|
/* get specular component */ |
| 188 |
|
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
| 189 |
|
nd.specfl |= SP_REFL; |
| 193 |
|
else |
| 194 |
|
setcolor(nd.scolor, 1.0, 1.0, 1.0); |
| 195 |
|
scalecolor(nd.scolor, nd.rspec); |
| 189 |
– |
/* improved model */ |
| 190 |
– |
dtmp = exp(-BSPEC(m)*nd.pdot); |
| 191 |
– |
for (i = 0; i < 3; i++) |
| 192 |
– |
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp; |
| 193 |
– |
nd.rspec += (1.0-nd.rspec)*dtmp; |
| 196 |
|
/* check threshold */ |
| 197 |
< |
if (specthresh > FTINY && |
| 196 |
< |
((specthresh >= 1.-FTINY || |
| 197 |
< |
specthresh + (.1 - .2*urand(8199+samplendx)) |
| 198 |
< |
> nd.rspec))) |
| 197 |
> |
if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY) |
| 198 |
|
nd.specfl |= SP_RBLT; |
| 199 |
|
/* compute reflected ray */ |
| 200 |
|
for (i = 0; i < 3; i++) |
| 221 |
|
if (nd.tspec > FTINY) { |
| 222 |
|
nd.specfl |= SP_TRAN; |
| 223 |
|
/* check threshold */ |
| 224 |
< |
if (specthresh > FTINY && |
| 225 |
< |
((specthresh >= 1.-FTINY || |
| 227 |
< |
specthresh + |
| 228 |
< |
(.1 - .2*urand(7241+samplendx)) |
| 229 |
< |
> nd.tspec))) |
| 224 |
> |
if (!(nd.specfl & SP_PURE) && |
| 225 |
> |
specthresh >= nd.tspec-FTINY) |
| 226 |
|
nd.specfl |= SP_TBLT; |
| 227 |
|
if (r->crtype & SHADOW || |
| 228 |
|
DOT(r->pert,r->pert) <= FTINY*FTINY) { |
| 230 |
|
transtest = 2; |
| 231 |
|
} else { |
| 232 |
|
for (i = 0; i < 3; i++) /* perturb */ |
| 233 |
< |
nd.prdir[i] = r->rdir[i] - |
| 238 |
< |
.75*r->pert[i]; |
| 233 |
> |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
| 234 |
|
if (DOT(nd.prdir, r->ron) < -FTINY) |
| 235 |
|
normalize(nd.prdir); /* OK */ |
| 236 |
|
else |
| 251 |
|
transtest *= bright(lr.rcol); |
| 252 |
|
transdist = r->rot + lr.rt; |
| 253 |
|
} |
| 254 |
< |
} |
| 254 |
> |
} else |
| 255 |
> |
transtest = 0; |
| 256 |
|
|
| 257 |
|
if (r->crtype & SHADOW) /* the rest is shadow */ |
| 258 |
< |
return; |
| 258 |
> |
return(1); |
| 259 |
|
/* diffuse reflection */ |
| 260 |
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
| 261 |
|
|
| 262 |
|
if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) |
| 263 |
< |
return; /* 100% pure specular */ |
| 263 |
> |
return(1); /* 100% pure specular */ |
| 264 |
|
|
| 265 |
< |
if (r->ro->otype == OBJ_FACE || r->ro->otype == OBJ_RING) |
| 265 |
> |
if (r->ro != NULL && (r->ro->otype == OBJ_FACE || |
| 266 |
> |
r->ro->otype == OBJ_RING)) |
| 267 |
|
nd.specfl |= SP_FLAT; |
| 268 |
|
|
| 269 |
|
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE)) |
| 294 |
|
/* check distance */ |
| 295 |
|
if (transtest > bright(r->rcol)) |
| 296 |
|
r->rt = transdist; |
| 297 |
+ |
|
| 298 |
+ |
return(1); |
| 299 |
|
} |
| 300 |
|
|
| 301 |
|
|
| 309 |
|
double rv[2]; |
| 310 |
|
double d, sinp, cosp; |
| 311 |
|
register int i; |
| 312 |
+ |
/* quick test */ |
| 313 |
+ |
if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL && |
| 314 |
+ |
(np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN) |
| 315 |
+ |
return; |
| 316 |
|
/* set up sample coordinates */ |
| 317 |
|
v[0] = v[1] = v[2] = 0.0; |
| 318 |
|
for (i = 0; i < 3; i++) |
| 349 |
|
ndims--; |
| 350 |
|
} |
| 351 |
|
/* compute transmission */ |
| 352 |
+ |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
| 353 |
+ |
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) { |
| 354 |
+ |
dimlist[ndims++] = (int)np->mp; |
| 355 |
+ |
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
| 356 |
+ |
multisamp(rv, 2, d); |
| 357 |
+ |
d = 2.0*PI * rv[0]; |
| 358 |
+ |
cosp = cos(d); |
| 359 |
+ |
sinp = sin(d); |
| 360 |
+ |
rv[1] = 1.0 - specjitter*rv[1]; |
| 361 |
+ |
if (rv[1] <= FTINY) |
| 362 |
+ |
d = 1.0; |
| 363 |
+ |
else |
| 364 |
+ |
d = sqrt( -log(rv[1]) * np->alpha2 ); |
| 365 |
+ |
for (i = 0; i < 3; i++) |
| 366 |
+ |
sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]); |
| 367 |
+ |
if (DOT(sr.rdir, r->ron) < -FTINY) |
| 368 |
+ |
normalize(sr.rdir); /* OK, normalize */ |
| 369 |
+ |
else |
| 370 |
+ |
VCOPY(sr.rdir, np->prdir); /* else no jitter */ |
| 371 |
+ |
rayvalue(&sr); |
| 372 |
+ |
scalecolor(sr.rcol, np->tspec); |
| 373 |
+ |
multcolor(sr.rcol, np->mcolor); /* modified by color */ |
| 374 |
+ |
addcolor(r->rcol, sr.rcol); |
| 375 |
+ |
ndims--; |
| 376 |
+ |
} |
| 377 |
|
} |