ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.87
Committed: Fri Dec 20 16:29:50 2024 UTC (4 months, 1 week ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.86: +2 -2 lines
Log Message:
perf: Adjustment to source spread in lobe speculars that accounts for -dj

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: normal.c,v 2.86 2024/12/19 23:25:28 greg Exp $";
3 #endif
4 /*
5 * normal.c - shading function for normal materials.
6 *
7 * 8/19/85
8 * 12/19/85 - added stuff for metals.
9 * 6/26/87 - improved specular model.
10 * 9/28/87 - added model for translucent materials.
11 * Later changes described in delta comments.
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "source.h"
19 #include "otypes.h"
20 #include "rtotypes.h"
21 #include "random.h"
22 #include "pmapmat.h"
23
24 #ifndef MAXITER
25 #define MAXITER 10 /* maximum # specular ray attempts */
26 #endif
27 /* estimate of Fresnel function */
28 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00202943064)
29 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
30
31
32 /*
33 * This routine implements the isotropic Gaussian
34 * model described by Ward in Siggraph `92 article.
35 * We orient the surface towards the incoming ray, so a single
36 * surface can be used to represent an infinitely thin object.
37 *
38 * Arguments for MAT_PLASTIC and MAT_METAL are:
39 * red grn blu specular-frac. facet-slope
40 *
41 * Arguments for MAT_TRANS are:
42 * red grn blu rspec rough trans tspec
43 */
44
45 /* specularity flags */
46 #define SP_REFL 01 /* has reflected specular component */
47 #define SP_TRAN 02 /* has transmitted specular */
48 #define SP_PURE 04 /* purely specular (zero roughness) */
49 #define SP_FLAT 010 /* flat reflecting surface */
50 #define SP_RBLT 020 /* reflection below sample threshold */
51 #define SP_TBLT 040 /* transmission below threshold */
52
53 typedef struct {
54 OBJREC *mp; /* material pointer */
55 RAY *rp; /* ray pointer */
56 short specfl; /* specularity flags, defined above */
57 SCOLOR mcolor; /* color of this material */
58 SCOLOR scolor; /* color of specular component */
59 FVECT prdir; /* vector in transmitted direction */
60 double alpha2; /* roughness squared */
61 double rdiff, rspec; /* reflected specular, diffuse */
62 double trans; /* transmissivity */
63 double tdiff, tspec; /* transmitted specular, diffuse */
64 FVECT pnorm; /* perturbed surface normal */
65 double pdot; /* perturbed dot product */
66 } NORMDAT; /* normal material data */
67
68 static void gaussamp(NORMDAT *np);
69
70
71 static void
72 dirnorm( /* compute source contribution */
73 SCOLOR scval, /* returned coefficient */
74 void *nnp, /* material data */
75 FVECT ldir, /* light source direction */
76 double omega /* light source size */
77 )
78 {
79 NORMDAT *np = nnp;
80 double ldot;
81 double lrdiff, ltdiff;
82 double dtmp, d2, d3, d4;
83 FVECT vtmp;
84 SCOLOR sctmp;
85
86 scolorblack(scval);
87
88 ldot = DOT(np->pnorm, ldir);
89
90 if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
91 return; /* wrong side */
92
93 /* Fresnel estimate */
94 lrdiff = np->rdiff;
95 ltdiff = np->tdiff;
96 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
97 (lrdiff > FTINY) | (ltdiff > FTINY)) {
98 dtmp = 1. - FRESNE(fabs(ldot));
99 lrdiff *= dtmp;
100 ltdiff *= dtmp;
101 }
102
103 if ((ldot > FTINY) & (lrdiff > FTINY)) {
104 /*
105 * Compute and add diffuse reflected component to returned
106 * color. The diffuse reflected component will always be
107 * modified by the color of the material.
108 */
109 copyscolor(sctmp, np->mcolor);
110 dtmp = ldot * omega * lrdiff * (1.0/PI);
111 scalescolor(sctmp, dtmp);
112 saddscolor(scval, sctmp);
113 }
114
115 if ((ldot < -FTINY) & (ltdiff > FTINY)) {
116 /*
117 * Compute diffuse transmission.
118 */
119 copyscolor(sctmp, np->mcolor);
120 dtmp = -ldot * omega * ltdiff * (1.0/PI);
121 scalescolor(sctmp, dtmp);
122 saddscolor(scval, sctmp);
123 }
124
125 if (ambRayInPmap(np->rp))
126 return; /* specular already in photon map */
127
128 if ((ldot > FTINY) & ((np->specfl&(SP_REFL|SP_PURE)) == SP_REFL)) {
129 /*
130 * Compute specular reflection coefficient using
131 * Gaussian distribution model.
132 */
133 /* roughness */
134 dtmp = np->alpha2;
135 /* + source if flat */
136 if (np->specfl & SP_FLAT)
137 dtmp += (1. - dstrsrc) * omega * (0.25/PI);
138 /* half vector */
139 VSUB(vtmp, ldir, np->rp->rdir);
140 d2 = DOT(vtmp, np->pnorm);
141 d2 *= d2;
142 d3 = DOT(vtmp,vtmp);
143 d4 = (d3 - d2) / d2;
144 /* new W-G-M-D model */
145 dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
146 /* worth using? */
147 if (dtmp > FTINY) {
148 copyscolor(sctmp, np->scolor);
149 dtmp *= ldot * omega;
150 scalescolor(sctmp, dtmp);
151 saddscolor(scval, sctmp);
152 }
153 }
154
155
156 if ((ldot < -FTINY) & ((np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN)) {
157 /*
158 * Compute specular transmission. Specular transmission
159 * is always modified by material color.
160 */
161 /* roughness + source */
162 dtmp = np->alpha2 + omega*(1.0/PI);
163 /* Gaussian */
164 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
165 /* worth using? */
166 if (dtmp > FTINY) {
167 copyscolor(sctmp, np->mcolor);
168 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
169 scalescolor(sctmp, dtmp);
170 saddscolor(scval, sctmp);
171 }
172 }
173 }
174
175
176 int
177 m_normal( /* color a ray that hit something normal */
178 OBJREC *m,
179 RAY *r
180 )
181 {
182 NORMDAT nd;
183 double fest;
184 int hastexture;
185 double d;
186 SCOLOR sctmp;
187 int i;
188
189 /* PMAP: skip transmitted shadow ray if accounted for in photon map */
190 /* No longer needed?
191 if (shadowRayInPmap(r) || ambRayInPmap(r))
192 return(1); */
193
194 /* easy shadow test */
195 if (r->crtype & SHADOW && m->otype != MAT_TRANS)
196 return(1);
197
198 if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
199 objerror(m, USER, "bad number of arguments");
200 /* check for back side */
201 if (r->rod < 0.0) {
202 if (!backvis) {
203 raytrans(r);
204 return(1);
205 }
206 raytexture(r, m->omod);
207 flipsurface(r); /* reorient if backvis */
208 } else
209 raytexture(r, m->omod);
210 nd.mp = m;
211 nd.rp = r;
212 /* get material color */
213 setscolor(nd.mcolor, m->oargs.farg[0],
214 m->oargs.farg[1],
215 m->oargs.farg[2]);
216 /* get roughness */
217 nd.specfl = 0;
218 nd.alpha2 = m->oargs.farg[4];
219 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
220 nd.specfl |= SP_PURE;
221
222 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
223 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
224 } else {
225 VCOPY(nd.pnorm, r->ron);
226 nd.pdot = r->rod;
227 }
228 if (!hastexture && r->ro != NULL && isflat(r->ro->otype))
229 nd.specfl |= SP_FLAT;
230 if (nd.pdot < .001)
231 nd.pdot = .001; /* non-zero for dirnorm() */
232 smultscolor(nd.mcolor, r->pcol); /* modify material color */
233 nd.rspec = m->oargs.farg[3];
234 /* compute Fresnel approx. */
235 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
236 fest = FRESNE(nd.pdot);
237 nd.rspec += fest*(1. - nd.rspec);
238 } else
239 fest = 0.;
240 /* compute transmission */
241 if (m->otype == MAT_TRANS) {
242 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
243 nd.tspec = nd.trans * m->oargs.farg[6];
244 nd.tdiff = nd.trans - nd.tspec;
245 if (nd.tspec > FTINY) {
246 nd.specfl |= SP_TRAN;
247 /* check threshold */
248 if (!(nd.specfl & SP_PURE) &&
249 specthresh >= nd.tspec-FTINY)
250 nd.specfl |= SP_TBLT;
251 if (!hastexture || r->crtype & (SHADOW|AMBIENT)) {
252 VCOPY(nd.prdir, r->rdir);
253 } else {
254 /* perturb */
255 VSUB(nd.prdir, r->rdir, r->pert);
256 if (DOT(nd.prdir, r->ron) < -FTINY)
257 normalize(nd.prdir); /* OK */
258 else
259 VCOPY(nd.prdir, r->rdir);
260 }
261 }
262 } else
263 nd.tdiff = nd.tspec = nd.trans = 0.0;
264 /* diffuse reflection */
265 nd.rdiff = 1.0 - nd.trans - nd.rspec;
266 /* transmitted ray */
267 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
268 RAY lr;
269 copyscolor(lr.rcoef, nd.mcolor); /* modified by color */
270 scalescolor(lr.rcoef, nd.tspec);
271 if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
272 VCOPY(lr.rdir, nd.prdir);
273 rayvalue(&lr);
274 smultscolor(lr.rcol, lr.rcoef);
275 saddscolor(r->rcol, lr.rcol);
276 if (nd.tspec >= 1.0-FTINY) {
277 /* completely transparent */
278 smultscolor(lr.mcol, lr.rcoef);
279 copyscolor(r->mcol, lr.mcol);
280 r->rmt = r->rot + lr.rmt;
281 r->rxt = r->rot + lr.rxt;
282 } else if (nd.tspec > nd.tdiff + nd.rdiff)
283 r->rxt = r->rot + raydistance(&lr);
284 }
285 }
286
287 if (r->crtype & SHADOW) /* the rest is shadow */
288 return(1);
289 /* get specular reflection */
290 if (nd.rspec > FTINY) {
291 nd.specfl |= SP_REFL;
292 /* compute specular color */
293 if (m->otype != MAT_METAL) {
294 setscolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
295 } else if (fest > FTINY) {
296 d = m->oargs.farg[3]*(1. - fest);
297 for (i = NCSAMP; i--; )
298 nd.scolor[i] = fest + nd.mcolor[i]*d;
299 } else {
300 copyscolor(nd.scolor, nd.mcolor);
301 scalescolor(nd.scolor, nd.rspec);
302 }
303 /* check threshold */
304 if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
305 nd.specfl |= SP_RBLT;
306 }
307 /* reflected ray */
308 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
309 RAY lr;
310 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
311 /* compute reflected ray */
312 VSUM(lr.rdir, r->rdir, nd.pnorm, 2.*nd.pdot);
313 /* penetration? */
314 if (hastexture && DOT(lr.rdir, r->ron) <= FTINY)
315 VSUM(lr.rdir, r->rdir, r->ron, 2.*r->rod);
316 checknorm(lr.rdir);
317 rayvalue(&lr);
318 smultscolor(lr.rcol, lr.rcoef);
319 copyscolor(r->mcol, lr.rcol);
320 saddscolor(r->rcol, lr.rcol);
321 r->rmt = r->rot;
322 if (nd.specfl & SP_FLAT && r->crtype & AMBIENT)
323 r->rmt += raydistance(&lr);
324 }
325 }
326
327 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
328 return(1); /* 100% pure specular */
329
330 if (!(nd.specfl & SP_PURE))
331 gaussamp(&nd); /* checks *BLT flags */
332
333 if (nd.rdiff > FTINY) { /* ambient from this side */
334 copyscolor(sctmp, nd.mcolor); /* modified by material color */
335 scalescolor(sctmp, nd.rdiff);
336 if (nd.specfl & SP_RBLT) /* add in specular as well? */
337 saddscolor(sctmp, nd.scolor);
338 multambient(sctmp, r, nd.pnorm);
339 saddscolor(r->rcol, sctmp); /* add to returned color */
340 }
341 if (nd.tdiff > FTINY) { /* ambient from other side */
342 FVECT bnorm;
343 copyscolor(sctmp, nd.mcolor); /* modified by color */
344 if (nd.specfl & SP_TBLT) {
345 scalescolor(sctmp, nd.trans);
346 } else {
347 scalescolor(sctmp, nd.tdiff);
348 }
349 bnorm[0] = -nd.pnorm[0];
350 bnorm[1] = -nd.pnorm[1];
351 bnorm[2] = -nd.pnorm[2];
352 multambient(sctmp, r, bnorm);
353 saddscolor(r->rcol, sctmp);
354 }
355 /* add direct component */
356 direct(r, dirnorm, &nd);
357
358 return(1);
359 }
360
361
362 static void
363 gaussamp( /* sample Gaussian specular */
364 NORMDAT *np
365 )
366 {
367 RAY sr;
368 FVECT u, v, h;
369 double rv[2];
370 double d, sinp, cosp;
371 SCOLOR scol;
372 int maxiter, ntrials, nstarget, nstaken;
373 int i;
374 /* quick test */
375 if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
376 (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
377 return;
378 /* set up sample coordinates */
379 getperpendicular(u, np->pnorm, rand_samp);
380 fcross(v, np->pnorm, u);
381 /* compute reflection */
382 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
383 rayorigin(&sr, RSPECULAR, np->rp, np->scolor) == 0) {
384 nstarget = 1;
385 if (specjitter > 1.5) { /* multiple samples? */
386 nstarget = specjitter*np->rp->rweight + .5;
387 if (sr.rweight <= minweight*nstarget)
388 nstarget = sr.rweight/minweight;
389 if (nstarget > 1) {
390 d = 1./nstarget;
391 scalescolor(sr.rcoef, d);
392 sr.rweight *= d;
393 } else
394 nstarget = 1;
395 }
396 scolorblack(scol);
397 dimlist[ndims++] = (int)(size_t)np->mp;
398 maxiter = MAXITER*nstarget;
399 for (nstaken = ntrials = 0; nstaken < nstarget &&
400 ntrials < maxiter; ntrials++) {
401 if (ntrials)
402 d = frandom();
403 else
404 d = urand(ilhash(dimlist,ndims)+samplendx);
405 multisamp(rv, 2, d);
406 d = 2.0*PI * rv[0];
407 cosp = tcos(d);
408 sinp = tsin(d);
409 if ((0. <= specjitter) & (specjitter < 1.))
410 rv[1] = 1.0 - specjitter*rv[1];
411 if (rv[1] <= FTINY)
412 d = 1.0;
413 else
414 d = sqrt( np->alpha2 * -log(rv[1]) );
415 for (i = 0; i < 3; i++)
416 h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
417 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
418 VSUM(sr.rdir, np->rp->rdir, h, d);
419 /* sample rejection test */
420 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
421 continue;
422 checknorm(sr.rdir);
423 if (nstarget > 1) { /* W-G-M-D adjustment */
424 if (nstaken) rayclear(&sr);
425 rayvalue(&sr);
426 d = 2./(1. + np->rp->rod/d);
427 scalescolor(sr.rcol, d);
428 saddscolor(scol, sr.rcol);
429 } else {
430 rayvalue(&sr);
431 smultscolor(sr.rcol, sr.rcoef);
432 saddscolor(np->rp->rcol, sr.rcol);
433 }
434 ++nstaken;
435 }
436 if (nstarget > 1) { /* final W-G-M-D weighting */
437 smultscolor(scol, sr.rcoef);
438 d = (double)nstarget/ntrials;
439 scalescolor(scol, d);
440 saddscolor(np->rp->rcol, scol);
441 }
442 ndims--;
443 }
444 /* compute transmission */
445 copyscolor(sr.rcoef, np->mcolor); /* modified by color */
446 scalescolor(sr.rcoef, np->tspec);
447 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
448 rayorigin(&sr, TSPECULAR, np->rp, sr.rcoef) == 0) {
449 nstarget = 1;
450 if (specjitter > 1.5) { /* multiple samples? */
451 nstarget = specjitter*np->rp->rweight + .5;
452 if (sr.rweight <= minweight*nstarget)
453 nstarget = sr.rweight/minweight;
454 if (nstarget > 1) {
455 d = 1./nstarget;
456 scalescolor(sr.rcoef, d);
457 sr.rweight *= d;
458 } else
459 nstarget = 1;
460 }
461 dimlist[ndims++] = (int)(size_t)np->mp;
462 maxiter = MAXITER*nstarget;
463 for (nstaken = ntrials = 0; nstaken < nstarget &&
464 ntrials < maxiter; ntrials++) {
465 if (ntrials)
466 d = frandom();
467 else
468 d = urand(ilhash(dimlist,ndims)+samplendx);
469 multisamp(rv, 2, d);
470 d = 2.0*PI * rv[0];
471 cosp = tcos(d);
472 sinp = tsin(d);
473 if ((0. <= specjitter) & (specjitter < 1.))
474 rv[1] = 1.0 - specjitter*rv[1];
475 if (rv[1] <= FTINY)
476 d = 1.0;
477 else
478 d = sqrt( np->alpha2 * -log(rv[1]) );
479 for (i = 0; i < 3; i++)
480 sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
481 /* sample rejection test */
482 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
483 continue;
484 normalize(sr.rdir); /* OK, normalize */
485 if (nstaken) /* multi-sampling */
486 rayclear(&sr);
487 rayvalue(&sr);
488 smultscolor(sr.rcol, sr.rcoef);
489 saddscolor(np->rp->rcol, sr.rcol);
490 ++nstaken;
491 }
492 ndims--;
493 }
494 }