ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.78
Committed: Wed Feb 13 01:00:31 2019 UTC (5 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.77: +9 -2 lines
Log Message:
Made treatment of mirror reflection color more consistent

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.78 static const char RCSid[] = "$Id: normal.c,v 2.77 2018/11/13 19:58:33 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * normal.c - shading function for normal materials.
6     *
7     * 8/19/85
8     * 12/19/85 - added stuff for metals.
9     * 6/26/87 - improved specular model.
10     * 9/28/87 - added model for translucent materials.
11 greg 2.2 * Later changes described in delta comments.
12 greg 1.1 */
13    
14 greg 2.39 #include "copyright.h"
15 greg 2.38
16 greg 1.1 #include "ray.h"
17 greg 2.46 #include "ambient.h"
18 schorsch 2.47 #include "source.h"
19 greg 1.1 #include "otypes.h"
20 schorsch 2.47 #include "rtotypes.h"
21 greg 2.2 #include "random.h"
22 greg 2.69 #include "pmapmat.h"
23 greg 2.2
24 greg 2.34 #ifndef MAXITER
25     #define MAXITER 10 /* maximum # specular ray attempts */
26     #endif
27 greg 2.38 /* estimate of Fresnel function */
28 greg 2.44 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
29 greg 2.51 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
30 greg 2.34
31 greg 2.24
32 greg 1.1 /*
33 greg 2.22 * This routine implements the isotropic Gaussian
34     * model described by Ward in Siggraph `92 article.
35 greg 1.1 * We orient the surface towards the incoming ray, so a single
36     * surface can be used to represent an infinitely thin object.
37     *
38     * Arguments for MAT_PLASTIC and MAT_METAL are:
39     * red grn blu specular-frac. facet-slope
40     *
41     * Arguments for MAT_TRANS are:
42     * red grn blu rspec rough trans tspec
43     */
44    
45 greg 2.2 /* specularity flags */
46     #define SP_REFL 01 /* has reflected specular component */
47     #define SP_TRAN 02 /* has transmitted specular */
48 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
49     #define SP_FLAT 010 /* flat reflecting surface */
50     #define SP_RBLT 020 /* reflection below sample threshold */
51     #define SP_TBLT 040 /* transmission below threshold */
52 greg 1.1
53 greg 1.3 typedef struct {
54     OBJREC *mp; /* material pointer */
55 greg 2.16 RAY *rp; /* ray pointer */
56 greg 2.2 short specfl; /* specularity flags, defined above */
57 greg 1.1 COLOR mcolor; /* color of this material */
58     COLOR scolor; /* color of specular component */
59     FVECT vrefl; /* vector in direction of reflected ray */
60 greg 1.14 FVECT prdir; /* vector in transmitted direction */
61 greg 2.2 double alpha2; /* roughness squared */
62 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
63     double trans; /* transmissivity */
64     double tdiff, tspec; /* transmitted specular, diffuse */
65     FVECT pnorm; /* perturbed surface normal */
66     double pdot; /* perturbed dot product */
67 greg 1.3 } NORMDAT; /* normal material data */
68    
69 greg 2.63 static void gaussamp(NORMDAT *np);
70 schorsch 2.47
71 greg 1.3
72 greg 2.38 static void
73 schorsch 2.47 dirnorm( /* compute source contribution */
74     COLOR cval, /* returned coefficient */
75 greg 2.62 void *nnp, /* material data */
76 schorsch 2.47 FVECT ldir, /* light source direction */
77     double omega /* light source size */
78     )
79 greg 1.3 {
80 greg 2.62 NORMDAT *np = nnp;
81 greg 1.1 double ldot;
82 greg 2.49 double lrdiff, ltdiff;
83 greg 2.54 double dtmp, d2, d3, d4;
84 greg 2.16 FVECT vtmp;
85 greg 1.3 COLOR ctmp;
86    
87     setcolor(cval, 0.0, 0.0, 0.0);
88    
89     ldot = DOT(np->pnorm, ldir);
90    
91     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
92     return; /* wrong side */
93    
94 greg 2.38 /* Fresnel estimate */
95 greg 2.49 lrdiff = np->rdiff;
96     ltdiff = np->tdiff;
97 greg 2.51 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
98 greg 2.49 (lrdiff > FTINY) | (ltdiff > FTINY)) {
99     dtmp = 1. - FRESNE(fabs(ldot));
100     lrdiff *= dtmp;
101     ltdiff *= dtmp;
102     }
103 greg 2.38
104 greg 2.49 if (ldot > FTINY && lrdiff > FTINY) {
105 greg 1.3 /*
106 greg 1.4 * Compute and add diffuse reflected component to returned
107     * color. The diffuse reflected component will always be
108     * modified by the color of the material.
109 greg 1.3 */
110     copycolor(ctmp, np->mcolor);
111 greg 2.49 dtmp = ldot * omega * lrdiff * (1.0/PI);
112 greg 1.3 scalecolor(ctmp, dtmp);
113     addcolor(cval, ctmp);
114     }
115 greg 2.72
116 greg 2.69 if (ldot < -FTINY && ltdiff > FTINY) {
117     /*
118     * Compute diffuse transmission.
119     */
120     copycolor(ctmp, np->mcolor);
121     dtmp = -ldot * omega * ltdiff * (1.0/PI);
122     scalecolor(ctmp, dtmp);
123     addcolor(cval, ctmp);
124     }
125 greg 2.72
126     if (ambRayInPmap(np->rp))
127     return; /* specular already in photon map */
128    
129 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
130 greg 1.3 /*
131     * Compute specular reflection coefficient using
132 greg 2.54 * Gaussian distribution model.
133 greg 1.3 */
134 greg 2.3 /* roughness */
135 greg 2.16 dtmp = np->alpha2;
136 greg 2.3 /* + source if flat */
137     if (np->specfl & SP_FLAT)
138 greg 2.48 dtmp += omega * (0.25/PI);
139 greg 2.23 /* half vector */
140 greg 2.62 VSUB(vtmp, ldir, np->rp->rdir);
141 greg 2.16 d2 = DOT(vtmp, np->pnorm);
142 greg 2.23 d2 *= d2;
143 greg 2.54 d3 = DOT(vtmp,vtmp);
144     d4 = (d3 - d2) / d2;
145     /* new W-G-M-D model */
146     dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
147 greg 1.3 /* worth using? */
148     if (dtmp > FTINY) {
149     copycolor(ctmp, np->scolor);
150 greg 2.54 dtmp *= ldot * omega;
151 greg 1.3 scalecolor(ctmp, dtmp);
152     addcolor(cval, ctmp);
153     }
154     }
155 greg 2.69
156    
157 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
158 greg 1.3 /*
159 greg 1.4 * Compute specular transmission. Specular transmission
160 greg 1.13 * is always modified by material color.
161 greg 1.3 */
162     /* roughness + source */
163 greg 2.48 dtmp = np->alpha2 + omega*(1.0/PI);
164 greg 2.54 /* Gaussian */
165 greg 2.53 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
166 greg 1.3 /* worth using? */
167     if (dtmp > FTINY) {
168 greg 1.13 copycolor(ctmp, np->mcolor);
169 greg 2.52 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
170 greg 1.13 scalecolor(ctmp, dtmp);
171 greg 1.3 addcolor(cval, ctmp);
172     }
173     }
174     }
175    
176    
177 greg 2.62 int
178 schorsch 2.47 m_normal( /* color a ray that hit something normal */
179 greg 2.62 OBJREC *m,
180     RAY *r
181 schorsch 2.47 )
182 greg 1.3 {
183     NORMDAT nd;
184 greg 2.38 double fest;
185 greg 2.29 int hastexture;
186     double d;
187 greg 1.1 COLOR ctmp;
188 greg 2.62 int i;
189 greg 2.69
190     /* PMAP: skip transmitted shadow ray if accounted for in photon map */
191 rschregle 2.74 /* No longer needed?
192 greg 2.73 if (shadowRayInPmap(r) || ambRayInPmap(r))
193 rschregle 2.74 return(1); */
194    
195 greg 1.1 /* easy shadow test */
196     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
197 greg 2.27 return(1);
198 greg 2.2
199     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
200     objerror(m, USER, "bad number of arguments");
201 greg 2.29 /* check for back side */
202     if (r->rod < 0.0) {
203 greg 2.66 if (!backvis) {
204 greg 2.29 raytrans(r);
205     return(1);
206     }
207 greg 2.40 raytexture(r, m->omod);
208 greg 2.29 flipsurface(r); /* reorient if backvis */
209 greg 2.40 } else
210     raytexture(r, m->omod);
211 greg 1.3 nd.mp = m;
212 greg 2.16 nd.rp = r;
213 greg 1.1 /* get material color */
214 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
215 greg 1.1 m->oargs.farg[1],
216     m->oargs.farg[2]);
217     /* get roughness */
218 greg 2.2 nd.specfl = 0;
219 greg 1.3 nd.alpha2 = m->oargs.farg[4];
220 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
221     nd.specfl |= SP_PURE;
222 greg 2.40
223 schorsch 2.45 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
224 greg 2.29 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
225 greg 2.41 } else {
226 greg 2.29 VCOPY(nd.pnorm, r->ron);
227     nd.pdot = r->rod;
228     }
229 greg 2.42 if (r->ro != NULL && isflat(r->ro->otype))
230     nd.specfl |= SP_FLAT;
231 greg 1.13 if (nd.pdot < .001)
232     nd.pdot = .001; /* non-zero for dirnorm() */
233 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
234 greg 2.30 nd.rspec = m->oargs.farg[3];
235 greg 2.38 /* compute Fresnel approx. */
236 greg 2.51 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
237 greg 2.62 fest = FRESNE(nd.pdot);
238 greg 2.38 nd.rspec += fest*(1. - nd.rspec);
239     } else
240     fest = 0.;
241 greg 1.3 /* compute transmission */
242 greg 1.1 if (m->otype == MAT_TRANS) {
243 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
244     nd.tspec = nd.trans * m->oargs.farg[6];
245     nd.tdiff = nd.trans - nd.tspec;
246 greg 2.2 if (nd.tspec > FTINY) {
247     nd.specfl |= SP_TRAN;
248 greg 2.5 /* check threshold */
249 greg 2.25 if (!(nd.specfl & SP_PURE) &&
250     specthresh >= nd.tspec-FTINY)
251 greg 2.5 nd.specfl |= SP_TBLT;
252 greg 2.67 if (!hastexture || r->crtype & (SHADOW|AMBIENT)) {
253 greg 2.2 VCOPY(nd.prdir, r->rdir);
254     } else {
255 greg 2.76 /* perturb */
256     VSUB(nd.prdir, r->rdir, r->pert);
257 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
258     normalize(nd.prdir); /* OK */
259     else
260     VCOPY(nd.prdir, r->rdir);
261 greg 2.2 }
262 greg 1.14 }
263 greg 1.1 } else
264 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
265 greg 1.1 /* transmitted ray */
266 greg 2.69
267 greg 2.71 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
268 greg 1.3 RAY lr;
269 greg 2.50 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
270     scalecolor(lr.rcoef, nd.tspec);
271     if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
272 greg 1.14 VCOPY(lr.rdir, nd.prdir);
273 greg 1.1 rayvalue(&lr);
274 greg 2.50 multcolor(lr.rcol, lr.rcoef);
275 greg 1.1 addcolor(r->rcol, lr.rcol);
276 greg 2.78 if (nd.tspec >= 1.0-FTINY) {
277     /* completely transparent */
278     multcolor(lr.mcol, lr.rcoef);
279     copycolor(r->mcol, lr.mcol);
280     r->rmt = r->rot + lr.rmt;
281     r->rxt = r->rot + lr.rxt;
282     } else
283     r->rxt = r->rot + raydistance(&lr);
284 greg 1.1 }
285 greg 2.77 }
286 greg 2.2
287 greg 2.77 if (r->crtype & SHADOW) /* the rest is shadow */
288 greg 2.27 return(1);
289 greg 2.30 /* get specular reflection */
290     if (nd.rspec > FTINY) {
291     nd.specfl |= SP_REFL;
292     /* compute specular color */
293 greg 2.38 if (m->otype != MAT_METAL) {
294     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
295     } else if (fest > FTINY) {
296 greg 2.64 d = m->oargs.farg[3]*(1. - fest);
297 greg 2.38 for (i = 0; i < 3; i++)
298 greg 2.65 colval(nd.scolor,i) = fest +
299     colval(nd.mcolor,i)*d;
300 greg 2.38 } else {
301 greg 2.30 copycolor(nd.scolor, nd.mcolor);
302 greg 2.38 scalecolor(nd.scolor, nd.rspec);
303     }
304 greg 2.30 /* check threshold */
305     if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
306     nd.specfl |= SP_RBLT;
307     /* compute reflected ray */
308 greg 2.55 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot);
309 greg 2.30 /* penetration? */
310     if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
311 greg 2.55 VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod);
312 greg 2.53 checknorm(nd.vrefl);
313 gregl 2.36 }
314     /* reflected ray */
315 greg 2.71 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
316 gregl 2.36 RAY lr;
317 greg 2.50 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
318 gregl 2.36 VCOPY(lr.rdir, nd.vrefl);
319     rayvalue(&lr);
320 greg 2.50 multcolor(lr.rcol, lr.rcoef);
321 greg 2.77 copycolor(r->mcol, lr.rcol);
322 gregl 2.36 addcolor(r->rcol, lr.rcol);
323 greg 2.67 if (nd.specfl & SP_FLAT &&
324 greg 2.77 !hastexture | (r->crtype & AMBIENT))
325     r->rmt = r->rot + raydistance(&lr);
326 greg 2.30 }
327 greg 2.29 }
328 greg 1.1 /* diffuse reflection */
329 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
330 greg 1.1
331 greg 2.77 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
332 greg 2.27 return(1); /* 100% pure specular */
333 greg 2.77
334 greg 2.71 if (!(nd.specfl & SP_PURE))
335     gaussamp(&nd); /* checks *BLT flags */
336 greg 2.2
337 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
338 greg 2.50 copycolor(ctmp, nd.mcolor); /* modified by material color */
339 greg 2.61 scalecolor(ctmp, nd.rdiff);
340     if (nd.specfl & SP_RBLT) /* add in specular as well? */
341     addcolor(ctmp, nd.scolor);
342 greg 2.50 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
343 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
344     }
345 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
346 greg 2.50 copycolor(ctmp, nd.mcolor); /* modified by color */
347     if (nd.specfl & SP_TBLT)
348     scalecolor(ctmp, nd.trans);
349     else
350     scalecolor(ctmp, nd.tdiff);
351 greg 1.1 flipsurface(r);
352 greg 2.32 if (hastexture) {
353     FVECT bnorm;
354     bnorm[0] = -nd.pnorm[0];
355     bnorm[1] = -nd.pnorm[1];
356     bnorm[2] = -nd.pnorm[2];
357 greg 2.50 multambient(ctmp, r, bnorm);
358 greg 2.32 } else
359 greg 2.50 multambient(ctmp, r, r->ron);
360 greg 1.1 addcolor(r->rcol, ctmp);
361     flipsurface(r);
362     }
363 greg 1.3 /* add direct component */
364     direct(r, dirnorm, &nd);
365 greg 2.27
366     return(1);
367 greg 2.2 }
368    
369    
370 greg 2.38 static void
371 greg 2.54 gaussamp( /* sample Gaussian specular */
372 greg 2.62 NORMDAT *np
373 schorsch 2.47 )
374 greg 2.2 {
375     RAY sr;
376     FVECT u, v, h;
377     double rv[2];
378     double d, sinp, cosp;
379 greg 2.62 COLOR scol;
380 greg 2.58 int maxiter, ntrials, nstarget, nstaken;
381 greg 2.62 int i;
382 greg 2.13 /* quick test */
383     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
384     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
385     return;
386 greg 2.2 /* set up sample coordinates */
387 greg 2.70 getperpendicular(u, np->pnorm, rand_samp);
388 greg 2.2 fcross(v, np->pnorm, u);
389     /* compute reflection */
390 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
391 greg 2.63 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
392 greg 2.58 nstarget = 1;
393 greg 2.55 if (specjitter > 1.5) { /* multiple samples? */
394 greg 2.63 nstarget = specjitter*np->rp->rweight + .5;
395 greg 2.58 if (sr.rweight <= minweight*nstarget)
396     nstarget = sr.rweight/minweight;
397     if (nstarget > 1) {
398     d = 1./nstarget;
399     scalecolor(sr.rcoef, d);
400 greg 2.56 sr.rweight *= d;
401 greg 2.55 } else
402 greg 2.58 nstarget = 1;
403 greg 2.55 }
404 greg 2.58 setcolor(scol, 0., 0., 0.);
405 greg 2.60 dimlist[ndims++] = (int)(size_t)np->mp;
406 greg 2.58 maxiter = MAXITER*nstarget;
407     for (nstaken = ntrials = 0; nstaken < nstarget &&
408     ntrials < maxiter; ntrials++) {
409     if (ntrials)
410 greg 2.34 d = frandom();
411     else
412     d = urand(ilhash(dimlist,ndims)+samplendx);
413     multisamp(rv, 2, d);
414     d = 2.0*PI * rv[0];
415 gwlarson 2.37 cosp = tcos(d);
416     sinp = tsin(d);
417 greg 2.55 if ((0. <= specjitter) & (specjitter < 1.))
418     rv[1] = 1.0 - specjitter*rv[1];
419 greg 2.34 if (rv[1] <= FTINY)
420     d = 1.0;
421     else
422     d = sqrt( np->alpha2 * -log(rv[1]) );
423     for (i = 0; i < 3; i++)
424     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
425 greg 2.63 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
426     VSUM(sr.rdir, np->rp->rdir, h, d);
427 greg 2.58 /* sample rejection test */
428 greg 2.63 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
429 greg 2.55 continue;
430     checknorm(sr.rdir);
431 greg 2.58 if (nstarget > 1) { /* W-G-M-D adjustment */
432 greg 2.59 if (nstaken) rayclear(&sr);
433 greg 2.58 rayvalue(&sr);
434 greg 2.63 d = 2./(1. + np->rp->rod/d);
435 greg 2.58 scalecolor(sr.rcol, d);
436     addcolor(scol, sr.rcol);
437     } else {
438     rayvalue(&sr);
439     multcolor(sr.rcol, sr.rcoef);
440 greg 2.63 addcolor(np->rp->rcol, sr.rcol);
441 greg 2.34 }
442 greg 2.58 ++nstaken;
443     }
444     if (nstarget > 1) { /* final W-G-M-D weighting */
445     multcolor(scol, sr.rcoef);
446     d = (double)nstarget/ntrials;
447     scalecolor(scol, d);
448 greg 2.63 addcolor(np->rp->rcol, scol);
449 greg 2.34 }
450 greg 2.2 ndims--;
451     }
452     /* compute transmission */
453 greg 2.50 copycolor(sr.rcoef, np->mcolor); /* modified by color */
454     scalecolor(sr.rcoef, np->tspec);
455 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
456 greg 2.63 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
457 greg 2.58 nstarget = 1;
458 greg 2.55 if (specjitter > 1.5) { /* multiple samples? */
459 greg 2.63 nstarget = specjitter*np->rp->rweight + .5;
460 greg 2.58 if (sr.rweight <= minweight*nstarget)
461     nstarget = sr.rweight/minweight;
462     if (nstarget > 1) {
463     d = 1./nstarget;
464 greg 2.56 scalecolor(sr.rcoef, d);
465     sr.rweight *= d;
466 greg 2.55 } else
467 greg 2.58 nstarget = 1;
468 greg 2.55 }
469 greg 2.60 dimlist[ndims++] = (int)(size_t)np->mp;
470 greg 2.58 maxiter = MAXITER*nstarget;
471     for (nstaken = ntrials = 0; nstaken < nstarget &&
472     ntrials < maxiter; ntrials++) {
473     if (ntrials)
474 greg 2.34 d = frandom();
475     else
476 greg 2.58 d = urand(ilhash(dimlist,ndims)+samplendx);
477 greg 2.34 multisamp(rv, 2, d);
478     d = 2.0*PI * rv[0];
479 gwlarson 2.37 cosp = tcos(d);
480     sinp = tsin(d);
481 greg 2.55 if ((0. <= specjitter) & (specjitter < 1.))
482     rv[1] = 1.0 - specjitter*rv[1];
483 greg 2.34 if (rv[1] <= FTINY)
484     d = 1.0;
485     else
486 gwlarson 2.37 d = sqrt( np->alpha2 * -log(rv[1]) );
487 greg 2.34 for (i = 0; i < 3; i++)
488     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
489 greg 2.58 /* sample rejection test */
490 greg 2.63 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
491 greg 2.55 continue;
492     normalize(sr.rdir); /* OK, normalize */
493 greg 2.59 if (nstaken) /* multi-sampling */
494 greg 2.55 rayclear(&sr);
495     rayvalue(&sr);
496     multcolor(sr.rcol, sr.rcoef);
497 greg 2.63 addcolor(np->rp->rcol, sr.rcol);
498 greg 2.58 ++nstaken;
499 greg 2.34 }
500 greg 2.8 ndims--;
501     }
502 greg 1.1 }