ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.76
Committed: Wed Jan 10 04:08:50 2018 UTC (6 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2
Changes since 2.75: +3 -3 lines
Log Message:
Made behavior of BRTDfunc more consistent with other materials

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.76 static const char RCSid[] = "$Id: normal.c,v 2.75 2017/08/03 16:41:52 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * normal.c - shading function for normal materials.
6     *
7     * 8/19/85
8     * 12/19/85 - added stuff for metals.
9     * 6/26/87 - improved specular model.
10     * 9/28/87 - added model for translucent materials.
11 greg 2.2 * Later changes described in delta comments.
12 greg 1.1 */
13    
14 greg 2.39 #include "copyright.h"
15 greg 2.38
16 greg 1.1 #include "ray.h"
17 greg 2.46 #include "ambient.h"
18 schorsch 2.47 #include "source.h"
19 greg 1.1 #include "otypes.h"
20 schorsch 2.47 #include "rtotypes.h"
21 greg 2.2 #include "random.h"
22 greg 2.69 #include "pmapmat.h"
23 greg 2.2
24 greg 2.34 #ifndef MAXITER
25     #define MAXITER 10 /* maximum # specular ray attempts */
26     #endif
27 greg 2.38 /* estimate of Fresnel function */
28 greg 2.44 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
29 greg 2.51 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
30 greg 2.34
31 greg 2.24
32 greg 1.1 /*
33 greg 2.22 * This routine implements the isotropic Gaussian
34     * model described by Ward in Siggraph `92 article.
35 greg 1.1 * We orient the surface towards the incoming ray, so a single
36     * surface can be used to represent an infinitely thin object.
37     *
38     * Arguments for MAT_PLASTIC and MAT_METAL are:
39     * red grn blu specular-frac. facet-slope
40     *
41     * Arguments for MAT_TRANS are:
42     * red grn blu rspec rough trans tspec
43     */
44    
45 greg 2.2 /* specularity flags */
46     #define SP_REFL 01 /* has reflected specular component */
47     #define SP_TRAN 02 /* has transmitted specular */
48 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
49     #define SP_FLAT 010 /* flat reflecting surface */
50     #define SP_RBLT 020 /* reflection below sample threshold */
51     #define SP_TBLT 040 /* transmission below threshold */
52 greg 1.1
53 greg 1.3 typedef struct {
54     OBJREC *mp; /* material pointer */
55 greg 2.16 RAY *rp; /* ray pointer */
56 greg 2.2 short specfl; /* specularity flags, defined above */
57 greg 1.1 COLOR mcolor; /* color of this material */
58     COLOR scolor; /* color of specular component */
59     FVECT vrefl; /* vector in direction of reflected ray */
60 greg 1.14 FVECT prdir; /* vector in transmitted direction */
61 greg 2.2 double alpha2; /* roughness squared */
62 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
63     double trans; /* transmissivity */
64     double tdiff, tspec; /* transmitted specular, diffuse */
65     FVECT pnorm; /* perturbed surface normal */
66     double pdot; /* perturbed dot product */
67 greg 1.3 } NORMDAT; /* normal material data */
68    
69 greg 2.63 static void gaussamp(NORMDAT *np);
70 schorsch 2.47
71 greg 1.3
72 greg 2.38 static void
73 schorsch 2.47 dirnorm( /* compute source contribution */
74     COLOR cval, /* returned coefficient */
75 greg 2.62 void *nnp, /* material data */
76 schorsch 2.47 FVECT ldir, /* light source direction */
77     double omega /* light source size */
78     )
79 greg 1.3 {
80 greg 2.62 NORMDAT *np = nnp;
81 greg 1.1 double ldot;
82 greg 2.49 double lrdiff, ltdiff;
83 greg 2.54 double dtmp, d2, d3, d4;
84 greg 2.16 FVECT vtmp;
85 greg 1.3 COLOR ctmp;
86    
87     setcolor(cval, 0.0, 0.0, 0.0);
88    
89     ldot = DOT(np->pnorm, ldir);
90    
91     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
92     return; /* wrong side */
93    
94 greg 2.38 /* Fresnel estimate */
95 greg 2.49 lrdiff = np->rdiff;
96     ltdiff = np->tdiff;
97 greg 2.51 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
98 greg 2.49 (lrdiff > FTINY) | (ltdiff > FTINY)) {
99     dtmp = 1. - FRESNE(fabs(ldot));
100     lrdiff *= dtmp;
101     ltdiff *= dtmp;
102     }
103 greg 2.38
104 greg 2.49 if (ldot > FTINY && lrdiff > FTINY) {
105 greg 1.3 /*
106 greg 1.4 * Compute and add diffuse reflected component to returned
107     * color. The diffuse reflected component will always be
108     * modified by the color of the material.
109 greg 1.3 */
110     copycolor(ctmp, np->mcolor);
111 greg 2.49 dtmp = ldot * omega * lrdiff * (1.0/PI);
112 greg 1.3 scalecolor(ctmp, dtmp);
113     addcolor(cval, ctmp);
114     }
115 greg 2.72
116 greg 2.69 if (ldot < -FTINY && ltdiff > FTINY) {
117     /*
118     * Compute diffuse transmission.
119     */
120     copycolor(ctmp, np->mcolor);
121     dtmp = -ldot * omega * ltdiff * (1.0/PI);
122     scalecolor(ctmp, dtmp);
123     addcolor(cval, ctmp);
124     }
125 greg 2.72
126     if (ambRayInPmap(np->rp))
127     return; /* specular already in photon map */
128    
129 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
130 greg 1.3 /*
131     * Compute specular reflection coefficient using
132 greg 2.54 * Gaussian distribution model.
133 greg 1.3 */
134 greg 2.3 /* roughness */
135 greg 2.16 dtmp = np->alpha2;
136 greg 2.3 /* + source if flat */
137     if (np->specfl & SP_FLAT)
138 greg 2.48 dtmp += omega * (0.25/PI);
139 greg 2.23 /* half vector */
140 greg 2.62 VSUB(vtmp, ldir, np->rp->rdir);
141 greg 2.16 d2 = DOT(vtmp, np->pnorm);
142 greg 2.23 d2 *= d2;
143 greg 2.54 d3 = DOT(vtmp,vtmp);
144     d4 = (d3 - d2) / d2;
145     /* new W-G-M-D model */
146     dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
147 greg 1.3 /* worth using? */
148     if (dtmp > FTINY) {
149     copycolor(ctmp, np->scolor);
150 greg 2.54 dtmp *= ldot * omega;
151 greg 1.3 scalecolor(ctmp, dtmp);
152     addcolor(cval, ctmp);
153     }
154     }
155 greg 2.69
156    
157 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
158 greg 1.3 /*
159 greg 1.4 * Compute specular transmission. Specular transmission
160 greg 1.13 * is always modified by material color.
161 greg 1.3 */
162     /* roughness + source */
163 greg 2.48 dtmp = np->alpha2 + omega*(1.0/PI);
164 greg 2.54 /* Gaussian */
165 greg 2.53 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
166 greg 1.3 /* worth using? */
167     if (dtmp > FTINY) {
168 greg 1.13 copycolor(ctmp, np->mcolor);
169 greg 2.52 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
170 greg 1.13 scalecolor(ctmp, dtmp);
171 greg 1.3 addcolor(cval, ctmp);
172     }
173     }
174     }
175    
176    
177 greg 2.62 int
178 schorsch 2.47 m_normal( /* color a ray that hit something normal */
179 greg 2.62 OBJREC *m,
180     RAY *r
181 schorsch 2.47 )
182 greg 1.3 {
183     NORMDAT nd;
184 greg 2.38 double fest;
185 greg 1.9 double transtest, transdist;
186 greg 2.29 double mirtest, mirdist;
187     int hastexture;
188     double d;
189 greg 1.1 COLOR ctmp;
190 greg 2.62 int i;
191 greg 2.69
192     /* PMAP: skip transmitted shadow ray if accounted for in photon map */
193 rschregle 2.74 /* No longer needed?
194 greg 2.73 if (shadowRayInPmap(r) || ambRayInPmap(r))
195 rschregle 2.74 return(1); */
196    
197 greg 1.1 /* easy shadow test */
198     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
199 greg 2.27 return(1);
200 greg 2.2
201     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
202     objerror(m, USER, "bad number of arguments");
203 greg 2.29 /* check for back side */
204     if (r->rod < 0.0) {
205 greg 2.66 if (!backvis) {
206 greg 2.29 raytrans(r);
207     return(1);
208     }
209 greg 2.40 raytexture(r, m->omod);
210 greg 2.29 flipsurface(r); /* reorient if backvis */
211 greg 2.40 } else
212     raytexture(r, m->omod);
213 greg 1.3 nd.mp = m;
214 greg 2.16 nd.rp = r;
215 greg 1.1 /* get material color */
216 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
217 greg 1.1 m->oargs.farg[1],
218     m->oargs.farg[2]);
219     /* get roughness */
220 greg 2.2 nd.specfl = 0;
221 greg 1.3 nd.alpha2 = m->oargs.farg[4];
222 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
223     nd.specfl |= SP_PURE;
224 greg 2.40
225 schorsch 2.45 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
226 greg 2.29 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
227 greg 2.41 } else {
228 greg 2.29 VCOPY(nd.pnorm, r->ron);
229     nd.pdot = r->rod;
230     }
231 greg 2.42 if (r->ro != NULL && isflat(r->ro->otype))
232     nd.specfl |= SP_FLAT;
233 greg 1.13 if (nd.pdot < .001)
234     nd.pdot = .001; /* non-zero for dirnorm() */
235 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
236 greg 2.29 mirtest = transtest = 0;
237     mirdist = transdist = r->rot;
238 greg 2.30 nd.rspec = m->oargs.farg[3];
239 greg 2.38 /* compute Fresnel approx. */
240 greg 2.51 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
241 greg 2.62 fest = FRESNE(nd.pdot);
242 greg 2.38 nd.rspec += fest*(1. - nd.rspec);
243     } else
244     fest = 0.;
245 greg 1.3 /* compute transmission */
246 greg 1.1 if (m->otype == MAT_TRANS) {
247 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
248     nd.tspec = nd.trans * m->oargs.farg[6];
249     nd.tdiff = nd.trans - nd.tspec;
250 greg 2.2 if (nd.tspec > FTINY) {
251     nd.specfl |= SP_TRAN;
252 greg 2.5 /* check threshold */
253 greg 2.25 if (!(nd.specfl & SP_PURE) &&
254     specthresh >= nd.tspec-FTINY)
255 greg 2.5 nd.specfl |= SP_TBLT;
256 greg 2.67 if (!hastexture || r->crtype & (SHADOW|AMBIENT)) {
257 greg 2.2 VCOPY(nd.prdir, r->rdir);
258     transtest = 2;
259     } else {
260 greg 2.76 /* perturb */
261     VSUB(nd.prdir, r->rdir, r->pert);
262 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
263     normalize(nd.prdir); /* OK */
264     else
265     VCOPY(nd.prdir, r->rdir);
266 greg 2.2 }
267 greg 1.14 }
268 greg 1.1 } else
269 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
270 greg 1.1 /* transmitted ray */
271 greg 2.69
272 greg 2.71 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
273 greg 1.3 RAY lr;
274 greg 2.50 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
275     scalecolor(lr.rcoef, nd.tspec);
276     if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
277 greg 1.14 VCOPY(lr.rdir, nd.prdir);
278 greg 1.1 rayvalue(&lr);
279 greg 2.50 multcolor(lr.rcol, lr.rcoef);
280 greg 1.1 addcolor(r->rcol, lr.rcol);
281 greg 1.9 transtest *= bright(lr.rcol);
282     transdist = r->rot + lr.rt;
283 greg 1.1 }
284 greg 2.11 } else
285     transtest = 0;
286 greg 2.2
287 greg 2.29 if (r->crtype & SHADOW) { /* the rest is shadow */
288     r->rt = transdist;
289 greg 2.27 return(1);
290 greg 2.30 }
291     /* get specular reflection */
292     if (nd.rspec > FTINY) {
293     nd.specfl |= SP_REFL;
294     /* compute specular color */
295 greg 2.38 if (m->otype != MAT_METAL) {
296     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
297     } else if (fest > FTINY) {
298 greg 2.64 d = m->oargs.farg[3]*(1. - fest);
299 greg 2.38 for (i = 0; i < 3; i++)
300 greg 2.65 colval(nd.scolor,i) = fest +
301     colval(nd.mcolor,i)*d;
302 greg 2.38 } else {
303 greg 2.30 copycolor(nd.scolor, nd.mcolor);
304 greg 2.38 scalecolor(nd.scolor, nd.rspec);
305     }
306 greg 2.30 /* check threshold */
307     if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
308     nd.specfl |= SP_RBLT;
309     /* compute reflected ray */
310 greg 2.55 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot);
311 greg 2.30 /* penetration? */
312     if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
313 greg 2.55 VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod);
314 greg 2.53 checknorm(nd.vrefl);
315 gregl 2.36 }
316     /* reflected ray */
317 greg 2.71 if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
318 gregl 2.36 RAY lr;
319 greg 2.50 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
320 gregl 2.36 VCOPY(lr.rdir, nd.vrefl);
321     rayvalue(&lr);
322 greg 2.50 multcolor(lr.rcol, lr.rcoef);
323 gregl 2.36 addcolor(r->rcol, lr.rcol);
324 greg 2.67 if (nd.specfl & SP_FLAT &&
325     !hastexture | (r->crtype & AMBIENT)) {
326 gregl 2.36 mirtest = 2.*bright(lr.rcol);
327     mirdist = r->rot + lr.rt;
328 greg 2.30 }
329     }
330 greg 2.29 }
331 greg 1.1 /* diffuse reflection */
332 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
333 greg 1.1
334 greg 2.75 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY) {
335     if (mirtest > transtest+FTINY)
336     r->rt = mirdist;
337     else if (transtest > FTINY)
338     r->rt = transdist;
339 greg 2.27 return(1); /* 100% pure specular */
340 greg 2.75 }
341 greg 2.71 if (!(nd.specfl & SP_PURE))
342     gaussamp(&nd); /* checks *BLT flags */
343 greg 2.2
344 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
345 greg 2.50 copycolor(ctmp, nd.mcolor); /* modified by material color */
346 greg 2.61 scalecolor(ctmp, nd.rdiff);
347     if (nd.specfl & SP_RBLT) /* add in specular as well? */
348     addcolor(ctmp, nd.scolor);
349 greg 2.50 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
350 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
351     }
352 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
353 greg 2.50 copycolor(ctmp, nd.mcolor); /* modified by color */
354     if (nd.specfl & SP_TBLT)
355     scalecolor(ctmp, nd.trans);
356     else
357     scalecolor(ctmp, nd.tdiff);
358 greg 1.1 flipsurface(r);
359 greg 2.32 if (hastexture) {
360     FVECT bnorm;
361     bnorm[0] = -nd.pnorm[0];
362     bnorm[1] = -nd.pnorm[1];
363     bnorm[2] = -nd.pnorm[2];
364 greg 2.50 multambient(ctmp, r, bnorm);
365 greg 2.32 } else
366 greg 2.50 multambient(ctmp, r, r->ron);
367 greg 1.1 addcolor(r->rcol, ctmp);
368     flipsurface(r);
369     }
370 greg 1.3 /* add direct component */
371     direct(r, dirnorm, &nd);
372 greg 1.9 /* check distance */
373 greg 2.29 d = bright(r->rcol);
374     if (transtest > d)
375 greg 1.9 r->rt = transdist;
376 greg 2.29 else if (mirtest > d)
377     r->rt = mirdist;
378 greg 2.27
379     return(1);
380 greg 2.2 }
381    
382    
383 greg 2.38 static void
384 greg 2.54 gaussamp( /* sample Gaussian specular */
385 greg 2.62 NORMDAT *np
386 schorsch 2.47 )
387 greg 2.2 {
388     RAY sr;
389     FVECT u, v, h;
390     double rv[2];
391     double d, sinp, cosp;
392 greg 2.62 COLOR scol;
393 greg 2.58 int maxiter, ntrials, nstarget, nstaken;
394 greg 2.62 int i;
395 greg 2.13 /* quick test */
396     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
397     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
398     return;
399 greg 2.2 /* set up sample coordinates */
400 greg 2.70 getperpendicular(u, np->pnorm, rand_samp);
401 greg 2.2 fcross(v, np->pnorm, u);
402     /* compute reflection */
403 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
404 greg 2.63 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
405 greg 2.58 nstarget = 1;
406 greg 2.55 if (specjitter > 1.5) { /* multiple samples? */
407 greg 2.63 nstarget = specjitter*np->rp->rweight + .5;
408 greg 2.58 if (sr.rweight <= minweight*nstarget)
409     nstarget = sr.rweight/minweight;
410     if (nstarget > 1) {
411     d = 1./nstarget;
412     scalecolor(sr.rcoef, d);
413 greg 2.56 sr.rweight *= d;
414 greg 2.55 } else
415 greg 2.58 nstarget = 1;
416 greg 2.55 }
417 greg 2.58 setcolor(scol, 0., 0., 0.);
418 greg 2.60 dimlist[ndims++] = (int)(size_t)np->mp;
419 greg 2.58 maxiter = MAXITER*nstarget;
420     for (nstaken = ntrials = 0; nstaken < nstarget &&
421     ntrials < maxiter; ntrials++) {
422     if (ntrials)
423 greg 2.34 d = frandom();
424     else
425     d = urand(ilhash(dimlist,ndims)+samplendx);
426     multisamp(rv, 2, d);
427     d = 2.0*PI * rv[0];
428 gwlarson 2.37 cosp = tcos(d);
429     sinp = tsin(d);
430 greg 2.55 if ((0. <= specjitter) & (specjitter < 1.))
431     rv[1] = 1.0 - specjitter*rv[1];
432 greg 2.34 if (rv[1] <= FTINY)
433     d = 1.0;
434     else
435     d = sqrt( np->alpha2 * -log(rv[1]) );
436     for (i = 0; i < 3; i++)
437     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
438 greg 2.63 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
439     VSUM(sr.rdir, np->rp->rdir, h, d);
440 greg 2.58 /* sample rejection test */
441 greg 2.63 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
442 greg 2.55 continue;
443     checknorm(sr.rdir);
444 greg 2.58 if (nstarget > 1) { /* W-G-M-D adjustment */
445 greg 2.59 if (nstaken) rayclear(&sr);
446 greg 2.58 rayvalue(&sr);
447 greg 2.63 d = 2./(1. + np->rp->rod/d);
448 greg 2.58 scalecolor(sr.rcol, d);
449     addcolor(scol, sr.rcol);
450     } else {
451     rayvalue(&sr);
452     multcolor(sr.rcol, sr.rcoef);
453 greg 2.63 addcolor(np->rp->rcol, sr.rcol);
454 greg 2.34 }
455 greg 2.58 ++nstaken;
456     }
457     if (nstarget > 1) { /* final W-G-M-D weighting */
458     multcolor(scol, sr.rcoef);
459     d = (double)nstarget/ntrials;
460     scalecolor(scol, d);
461 greg 2.63 addcolor(np->rp->rcol, scol);
462 greg 2.34 }
463 greg 2.2 ndims--;
464     }
465     /* compute transmission */
466 greg 2.50 copycolor(sr.rcoef, np->mcolor); /* modified by color */
467     scalecolor(sr.rcoef, np->tspec);
468 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
469 greg 2.63 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
470 greg 2.58 nstarget = 1;
471 greg 2.55 if (specjitter > 1.5) { /* multiple samples? */
472 greg 2.63 nstarget = specjitter*np->rp->rweight + .5;
473 greg 2.58 if (sr.rweight <= minweight*nstarget)
474     nstarget = sr.rweight/minweight;
475     if (nstarget > 1) {
476     d = 1./nstarget;
477 greg 2.56 scalecolor(sr.rcoef, d);
478     sr.rweight *= d;
479 greg 2.55 } else
480 greg 2.58 nstarget = 1;
481 greg 2.55 }
482 greg 2.60 dimlist[ndims++] = (int)(size_t)np->mp;
483 greg 2.58 maxiter = MAXITER*nstarget;
484     for (nstaken = ntrials = 0; nstaken < nstarget &&
485     ntrials < maxiter; ntrials++) {
486     if (ntrials)
487 greg 2.34 d = frandom();
488     else
489 greg 2.58 d = urand(ilhash(dimlist,ndims)+samplendx);
490 greg 2.34 multisamp(rv, 2, d);
491     d = 2.0*PI * rv[0];
492 gwlarson 2.37 cosp = tcos(d);
493     sinp = tsin(d);
494 greg 2.55 if ((0. <= specjitter) & (specjitter < 1.))
495     rv[1] = 1.0 - specjitter*rv[1];
496 greg 2.34 if (rv[1] <= FTINY)
497     d = 1.0;
498     else
499 gwlarson 2.37 d = sqrt( np->alpha2 * -log(rv[1]) );
500 greg 2.34 for (i = 0; i < 3; i++)
501     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
502 greg 2.58 /* sample rejection test */
503 greg 2.63 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
504 greg 2.55 continue;
505     normalize(sr.rdir); /* OK, normalize */
506 greg 2.59 if (nstaken) /* multi-sampling */
507 greg 2.55 rayclear(&sr);
508     rayvalue(&sr);
509     multcolor(sr.rcol, sr.rcoef);
510 greg 2.63 addcolor(np->rp->rcol, sr.rcol);
511 greg 2.58 ++nstaken;
512 greg 2.34 }
513 greg 2.8 ndims--;
514     }
515 greg 1.1 }