ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.64
Committed: Mon Jul 30 17:46:50 2012 UTC (11 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.63: +2 -2 lines
Log Message:
Fixed bug in Fresnel approximation for metals

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.64 static const char RCSid[] = "$Id: normal.c,v 2.63 2012/07/29 21:56:16 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * normal.c - shading function for normal materials.
6     *
7     * 8/19/85
8     * 12/19/85 - added stuff for metals.
9     * 6/26/87 - improved specular model.
10     * 9/28/87 - added model for translucent materials.
11 greg 2.2 * Later changes described in delta comments.
12 greg 1.1 */
13    
14 greg 2.39 #include "copyright.h"
15 greg 2.38
16 greg 1.1 #include "ray.h"
17 greg 2.46 #include "ambient.h"
18 schorsch 2.47 #include "source.h"
19 greg 1.1 #include "otypes.h"
20 schorsch 2.47 #include "rtotypes.h"
21 greg 2.2 #include "random.h"
22    
23 greg 2.34 #ifndef MAXITER
24     #define MAXITER 10 /* maximum # specular ray attempts */
25     #endif
26 greg 2.38 /* estimate of Fresnel function */
27 greg 2.44 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28 greg 2.51 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
29 greg 2.34
30 greg 2.24
31 greg 1.1 /*
32 greg 2.22 * This routine implements the isotropic Gaussian
33     * model described by Ward in Siggraph `92 article.
34 greg 1.1 * We orient the surface towards the incoming ray, so a single
35     * surface can be used to represent an infinitely thin object.
36     *
37     * Arguments for MAT_PLASTIC and MAT_METAL are:
38     * red grn blu specular-frac. facet-slope
39     *
40     * Arguments for MAT_TRANS are:
41     * red grn blu rspec rough trans tspec
42     */
43    
44 greg 2.2 /* specularity flags */
45     #define SP_REFL 01 /* has reflected specular component */
46     #define SP_TRAN 02 /* has transmitted specular */
47 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
48     #define SP_FLAT 010 /* flat reflecting surface */
49     #define SP_RBLT 020 /* reflection below sample threshold */
50     #define SP_TBLT 040 /* transmission below threshold */
51 greg 1.1
52 greg 1.3 typedef struct {
53     OBJREC *mp; /* material pointer */
54 greg 2.16 RAY *rp; /* ray pointer */
55 greg 2.2 short specfl; /* specularity flags, defined above */
56 greg 1.1 COLOR mcolor; /* color of this material */
57     COLOR scolor; /* color of specular component */
58     FVECT vrefl; /* vector in direction of reflected ray */
59 greg 1.14 FVECT prdir; /* vector in transmitted direction */
60 greg 2.2 double alpha2; /* roughness squared */
61 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
62     double trans; /* transmissivity */
63     double tdiff, tspec; /* transmitted specular, diffuse */
64     FVECT pnorm; /* perturbed surface normal */
65     double pdot; /* perturbed dot product */
66 greg 1.3 } NORMDAT; /* normal material data */
67    
68 greg 2.63 static void gaussamp(NORMDAT *np);
69 schorsch 2.47
70 greg 1.3
71 greg 2.38 static void
72 schorsch 2.47 dirnorm( /* compute source contribution */
73     COLOR cval, /* returned coefficient */
74 greg 2.62 void *nnp, /* material data */
75 schorsch 2.47 FVECT ldir, /* light source direction */
76     double omega /* light source size */
77     )
78 greg 1.3 {
79 greg 2.62 NORMDAT *np = nnp;
80 greg 1.1 double ldot;
81 greg 2.49 double lrdiff, ltdiff;
82 greg 2.54 double dtmp, d2, d3, d4;
83 greg 2.16 FVECT vtmp;
84 greg 1.3 COLOR ctmp;
85    
86     setcolor(cval, 0.0, 0.0, 0.0);
87    
88     ldot = DOT(np->pnorm, ldir);
89    
90     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
91     return; /* wrong side */
92    
93 greg 2.38 /* Fresnel estimate */
94 greg 2.49 lrdiff = np->rdiff;
95     ltdiff = np->tdiff;
96 greg 2.51 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
97 greg 2.49 (lrdiff > FTINY) | (ltdiff > FTINY)) {
98     dtmp = 1. - FRESNE(fabs(ldot));
99     lrdiff *= dtmp;
100     ltdiff *= dtmp;
101     }
102 greg 2.38
103 greg 2.49 if (ldot > FTINY && lrdiff > FTINY) {
104 greg 1.3 /*
105 greg 1.4 * Compute and add diffuse reflected component to returned
106     * color. The diffuse reflected component will always be
107     * modified by the color of the material.
108 greg 1.3 */
109     copycolor(ctmp, np->mcolor);
110 greg 2.49 dtmp = ldot * omega * lrdiff * (1.0/PI);
111 greg 1.3 scalecolor(ctmp, dtmp);
112     addcolor(cval, ctmp);
113     }
114 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
115 greg 1.3 /*
116     * Compute specular reflection coefficient using
117 greg 2.54 * Gaussian distribution model.
118 greg 1.3 */
119 greg 2.3 /* roughness */
120 greg 2.16 dtmp = np->alpha2;
121 greg 2.3 /* + source if flat */
122     if (np->specfl & SP_FLAT)
123 greg 2.48 dtmp += omega * (0.25/PI);
124 greg 2.23 /* half vector */
125 greg 2.62 VSUB(vtmp, ldir, np->rp->rdir);
126 greg 2.16 d2 = DOT(vtmp, np->pnorm);
127 greg 2.23 d2 *= d2;
128 greg 2.54 d3 = DOT(vtmp,vtmp);
129     d4 = (d3 - d2) / d2;
130     /* new W-G-M-D model */
131     dtmp = exp(-d4/dtmp) * d3 / (PI * d2*d2 * dtmp);
132 greg 1.3 /* worth using? */
133     if (dtmp > FTINY) {
134     copycolor(ctmp, np->scolor);
135 greg 2.54 dtmp *= ldot * omega;
136 greg 1.3 scalecolor(ctmp, dtmp);
137     addcolor(cval, ctmp);
138     }
139     }
140 greg 2.49 if (ldot < -FTINY && ltdiff > FTINY) {
141 greg 1.3 /*
142     * Compute diffuse transmission.
143     */
144     copycolor(ctmp, np->mcolor);
145 greg 2.49 dtmp = -ldot * omega * ltdiff * (1.0/PI);
146 greg 1.3 scalecolor(ctmp, dtmp);
147     addcolor(cval, ctmp);
148     }
149 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
150 greg 1.3 /*
151 greg 1.4 * Compute specular transmission. Specular transmission
152 greg 1.13 * is always modified by material color.
153 greg 1.3 */
154     /* roughness + source */
155 greg 2.48 dtmp = np->alpha2 + omega*(1.0/PI);
156 greg 2.54 /* Gaussian */
157 greg 2.53 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
158 greg 1.3 /* worth using? */
159     if (dtmp > FTINY) {
160 greg 1.13 copycolor(ctmp, np->mcolor);
161 greg 2.52 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
162 greg 1.13 scalecolor(ctmp, dtmp);
163 greg 1.3 addcolor(cval, ctmp);
164     }
165     }
166     }
167    
168    
169 greg 2.62 int
170 schorsch 2.47 m_normal( /* color a ray that hit something normal */
171 greg 2.62 OBJREC *m,
172     RAY *r
173 schorsch 2.47 )
174 greg 1.3 {
175     NORMDAT nd;
176 greg 2.38 double fest;
177 greg 1.9 double transtest, transdist;
178 greg 2.29 double mirtest, mirdist;
179     int hastexture;
180     double d;
181 greg 1.1 COLOR ctmp;
182 greg 2.62 int i;
183 greg 1.1 /* easy shadow test */
184     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
185 greg 2.27 return(1);
186 greg 2.2
187     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
188     objerror(m, USER, "bad number of arguments");
189 greg 2.29 /* check for back side */
190     if (r->rod < 0.0) {
191     if (!backvis && m->otype != MAT_TRANS) {
192     raytrans(r);
193     return(1);
194     }
195 greg 2.40 raytexture(r, m->omod);
196 greg 2.29 flipsurface(r); /* reorient if backvis */
197 greg 2.40 } else
198     raytexture(r, m->omod);
199 greg 1.3 nd.mp = m;
200 greg 2.16 nd.rp = r;
201 greg 1.1 /* get material color */
202 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
203 greg 1.1 m->oargs.farg[1],
204     m->oargs.farg[2]);
205     /* get roughness */
206 greg 2.2 nd.specfl = 0;
207 greg 1.3 nd.alpha2 = m->oargs.farg[4];
208 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
209     nd.specfl |= SP_PURE;
210 greg 2.40
211 schorsch 2.45 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
212 greg 2.29 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
213 greg 2.41 } else {
214 greg 2.29 VCOPY(nd.pnorm, r->ron);
215     nd.pdot = r->rod;
216     }
217 greg 2.42 if (r->ro != NULL && isflat(r->ro->otype))
218     nd.specfl |= SP_FLAT;
219 greg 1.13 if (nd.pdot < .001)
220     nd.pdot = .001; /* non-zero for dirnorm() */
221 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
222 greg 2.29 mirtest = transtest = 0;
223     mirdist = transdist = r->rot;
224 greg 2.30 nd.rspec = m->oargs.farg[3];
225 greg 2.38 /* compute Fresnel approx. */
226 greg 2.51 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
227 greg 2.62 fest = FRESNE(nd.pdot);
228 greg 2.38 nd.rspec += fest*(1. - nd.rspec);
229     } else
230     fest = 0.;
231 greg 1.3 /* compute transmission */
232 greg 1.1 if (m->otype == MAT_TRANS) {
233 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
234     nd.tspec = nd.trans * m->oargs.farg[6];
235     nd.tdiff = nd.trans - nd.tspec;
236 greg 2.2 if (nd.tspec > FTINY) {
237     nd.specfl |= SP_TRAN;
238 greg 2.5 /* check threshold */
239 greg 2.25 if (!(nd.specfl & SP_PURE) &&
240     specthresh >= nd.tspec-FTINY)
241 greg 2.5 nd.specfl |= SP_TBLT;
242 greg 2.29 if (!hastexture || r->crtype & SHADOW) {
243 greg 2.2 VCOPY(nd.prdir, r->rdir);
244     transtest = 2;
245     } else {
246     for (i = 0; i < 3; i++) /* perturb */
247 greg 2.19 nd.prdir[i] = r->rdir[i] - r->pert[i];
248 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
249     normalize(nd.prdir); /* OK */
250     else
251     VCOPY(nd.prdir, r->rdir);
252 greg 2.2 }
253 greg 1.14 }
254 greg 1.1 } else
255 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
256 greg 1.1 /* transmitted ray */
257 gregl 2.36 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
258 greg 1.3 RAY lr;
259 greg 2.50 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
260     scalecolor(lr.rcoef, nd.tspec);
261     if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
262 greg 1.14 VCOPY(lr.rdir, nd.prdir);
263 greg 1.1 rayvalue(&lr);
264 greg 2.50 multcolor(lr.rcol, lr.rcoef);
265 greg 1.1 addcolor(r->rcol, lr.rcol);
266 greg 1.9 transtest *= bright(lr.rcol);
267     transdist = r->rot + lr.rt;
268 greg 1.1 }
269 greg 2.11 } else
270     transtest = 0;
271 greg 2.2
272 greg 2.29 if (r->crtype & SHADOW) { /* the rest is shadow */
273     r->rt = transdist;
274 greg 2.27 return(1);
275 greg 2.30 }
276     /* get specular reflection */
277     if (nd.rspec > FTINY) {
278     nd.specfl |= SP_REFL;
279     /* compute specular color */
280 greg 2.38 if (m->otype != MAT_METAL) {
281     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
282     } else if (fest > FTINY) {
283 greg 2.64 d = m->oargs.farg[3]*(1. - fest);
284 greg 2.38 for (i = 0; i < 3; i++)
285     nd.scolor[i] = fest + nd.mcolor[i]*d;
286     } else {
287 greg 2.30 copycolor(nd.scolor, nd.mcolor);
288 greg 2.38 scalecolor(nd.scolor, nd.rspec);
289     }
290 greg 2.30 /* check threshold */
291     if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
292     nd.specfl |= SP_RBLT;
293     /* compute reflected ray */
294 greg 2.55 VSUM(nd.vrefl, r->rdir, nd.pnorm, 2.*nd.pdot);
295 greg 2.30 /* penetration? */
296     if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
297 greg 2.55 VSUM(nd.vrefl, r->rdir, r->ron, 2.*r->rod);
298 greg 2.53 checknorm(nd.vrefl);
299 gregl 2.36 }
300     /* reflected ray */
301     if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
302     RAY lr;
303 greg 2.50 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
304 gregl 2.36 VCOPY(lr.rdir, nd.vrefl);
305     rayvalue(&lr);
306 greg 2.50 multcolor(lr.rcol, lr.rcoef);
307 gregl 2.36 addcolor(r->rcol, lr.rcol);
308     if (!hastexture && nd.specfl & SP_FLAT) {
309     mirtest = 2.*bright(lr.rcol);
310     mirdist = r->rot + lr.rt;
311 greg 2.30 }
312     }
313 greg 2.29 }
314 greg 1.1 /* diffuse reflection */
315 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
316 greg 1.1
317 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
318 greg 2.27 return(1); /* 100% pure specular */
319 greg 2.3
320 gregl 2.36 if (!(nd.specfl & SP_PURE))
321 greg 2.63 gaussamp(&nd); /* checks *BLT flags */
322 greg 2.2
323 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
324 greg 2.50 copycolor(ctmp, nd.mcolor); /* modified by material color */
325 greg 2.61 scalecolor(ctmp, nd.rdiff);
326     if (nd.specfl & SP_RBLT) /* add in specular as well? */
327     addcolor(ctmp, nd.scolor);
328 greg 2.50 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
329 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
330     }
331 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
332 greg 2.50 copycolor(ctmp, nd.mcolor); /* modified by color */
333     if (nd.specfl & SP_TBLT)
334     scalecolor(ctmp, nd.trans);
335     else
336     scalecolor(ctmp, nd.tdiff);
337 greg 1.1 flipsurface(r);
338 greg 2.32 if (hastexture) {
339     FVECT bnorm;
340     bnorm[0] = -nd.pnorm[0];
341     bnorm[1] = -nd.pnorm[1];
342     bnorm[2] = -nd.pnorm[2];
343 greg 2.50 multambient(ctmp, r, bnorm);
344 greg 2.32 } else
345 greg 2.50 multambient(ctmp, r, r->ron);
346 greg 1.1 addcolor(r->rcol, ctmp);
347     flipsurface(r);
348     }
349 greg 1.3 /* add direct component */
350     direct(r, dirnorm, &nd);
351 greg 1.9 /* check distance */
352 greg 2.29 d = bright(r->rcol);
353     if (transtest > d)
354 greg 1.9 r->rt = transdist;
355 greg 2.29 else if (mirtest > d)
356     r->rt = mirdist;
357 greg 2.27
358     return(1);
359 greg 2.2 }
360    
361    
362 greg 2.38 static void
363 greg 2.54 gaussamp( /* sample Gaussian specular */
364 greg 2.62 NORMDAT *np
365 schorsch 2.47 )
366 greg 2.2 {
367     RAY sr;
368     FVECT u, v, h;
369     double rv[2];
370     double d, sinp, cosp;
371 greg 2.62 COLOR scol;
372 greg 2.58 int maxiter, ntrials, nstarget, nstaken;
373 greg 2.62 int i;
374 greg 2.13 /* quick test */
375     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
376     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
377     return;
378 greg 2.2 /* set up sample coordinates */
379     v[0] = v[1] = v[2] = 0.0;
380     for (i = 0; i < 3; i++)
381     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
382     break;
383     v[i] = 1.0;
384     fcross(u, v, np->pnorm);
385     normalize(u);
386     fcross(v, np->pnorm, u);
387     /* compute reflection */
388 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
389 greg 2.63 rayorigin(&sr, SPECULAR, np->rp, np->scolor) == 0) {
390 greg 2.58 nstarget = 1;
391 greg 2.55 if (specjitter > 1.5) { /* multiple samples? */
392 greg 2.63 nstarget = specjitter*np->rp->rweight + .5;
393 greg 2.58 if (sr.rweight <= minweight*nstarget)
394     nstarget = sr.rweight/minweight;
395     if (nstarget > 1) {
396     d = 1./nstarget;
397     scalecolor(sr.rcoef, d);
398 greg 2.56 sr.rweight *= d;
399 greg 2.55 } else
400 greg 2.58 nstarget = 1;
401 greg 2.55 }
402 greg 2.58 setcolor(scol, 0., 0., 0.);
403 greg 2.60 dimlist[ndims++] = (int)(size_t)np->mp;
404 greg 2.58 maxiter = MAXITER*nstarget;
405     for (nstaken = ntrials = 0; nstaken < nstarget &&
406     ntrials < maxiter; ntrials++) {
407     if (ntrials)
408 greg 2.34 d = frandom();
409     else
410     d = urand(ilhash(dimlist,ndims)+samplendx);
411     multisamp(rv, 2, d);
412     d = 2.0*PI * rv[0];
413 gwlarson 2.37 cosp = tcos(d);
414     sinp = tsin(d);
415 greg 2.55 if ((0. <= specjitter) & (specjitter < 1.))
416     rv[1] = 1.0 - specjitter*rv[1];
417 greg 2.34 if (rv[1] <= FTINY)
418     d = 1.0;
419     else
420     d = sqrt( np->alpha2 * -log(rv[1]) );
421     for (i = 0; i < 3; i++)
422     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
423 greg 2.63 d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d);
424     VSUM(sr.rdir, np->rp->rdir, h, d);
425 greg 2.58 /* sample rejection test */
426 greg 2.63 if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY)
427 greg 2.55 continue;
428     checknorm(sr.rdir);
429 greg 2.58 if (nstarget > 1) { /* W-G-M-D adjustment */
430 greg 2.59 if (nstaken) rayclear(&sr);
431 greg 2.58 rayvalue(&sr);
432 greg 2.63 d = 2./(1. + np->rp->rod/d);
433 greg 2.58 scalecolor(sr.rcol, d);
434     addcolor(scol, sr.rcol);
435     } else {
436     rayvalue(&sr);
437     multcolor(sr.rcol, sr.rcoef);
438 greg 2.63 addcolor(np->rp->rcol, sr.rcol);
439 greg 2.34 }
440 greg 2.58 ++nstaken;
441     }
442     if (nstarget > 1) { /* final W-G-M-D weighting */
443     multcolor(scol, sr.rcoef);
444     d = (double)nstarget/ntrials;
445     scalecolor(scol, d);
446 greg 2.63 addcolor(np->rp->rcol, scol);
447 greg 2.34 }
448 greg 2.2 ndims--;
449     }
450     /* compute transmission */
451 greg 2.50 copycolor(sr.rcoef, np->mcolor); /* modified by color */
452     scalecolor(sr.rcoef, np->tspec);
453 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
454 greg 2.63 rayorigin(&sr, SPECULAR, np->rp, sr.rcoef) == 0) {
455 greg 2.58 nstarget = 1;
456 greg 2.55 if (specjitter > 1.5) { /* multiple samples? */
457 greg 2.63 nstarget = specjitter*np->rp->rweight + .5;
458 greg 2.58 if (sr.rweight <= minweight*nstarget)
459     nstarget = sr.rweight/minweight;
460     if (nstarget > 1) {
461     d = 1./nstarget;
462 greg 2.56 scalecolor(sr.rcoef, d);
463     sr.rweight *= d;
464 greg 2.55 } else
465 greg 2.58 nstarget = 1;
466 greg 2.55 }
467 greg 2.60 dimlist[ndims++] = (int)(size_t)np->mp;
468 greg 2.58 maxiter = MAXITER*nstarget;
469     for (nstaken = ntrials = 0; nstaken < nstarget &&
470     ntrials < maxiter; ntrials++) {
471     if (ntrials)
472 greg 2.34 d = frandom();
473     else
474 greg 2.58 d = urand(ilhash(dimlist,ndims)+samplendx);
475 greg 2.34 multisamp(rv, 2, d);
476     d = 2.0*PI * rv[0];
477 gwlarson 2.37 cosp = tcos(d);
478     sinp = tsin(d);
479 greg 2.55 if ((0. <= specjitter) & (specjitter < 1.))
480     rv[1] = 1.0 - specjitter*rv[1];
481 greg 2.34 if (rv[1] <= FTINY)
482     d = 1.0;
483     else
484 gwlarson 2.37 d = sqrt( np->alpha2 * -log(rv[1]) );
485 greg 2.34 for (i = 0; i < 3; i++)
486     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
487 greg 2.58 /* sample rejection test */
488 greg 2.63 if (DOT(sr.rdir, np->rp->ron) >= -FTINY)
489 greg 2.55 continue;
490     normalize(sr.rdir); /* OK, normalize */
491 greg 2.59 if (nstaken) /* multi-sampling */
492 greg 2.55 rayclear(&sr);
493     rayvalue(&sr);
494     multcolor(sr.rcol, sr.rcoef);
495 greg 2.63 addcolor(np->rp->rcol, sr.rcol);
496 greg 2.58 ++nstaken;
497 greg 2.34 }
498 greg 2.8 ndims--;
499     }
500 greg 1.1 }