ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.53
Committed: Sun Sep 26 15:51:15 2010 UTC (13 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.52: +3 -2 lines
Log Message:
Added checknorm() macro to avoid normalization errors with gcc --fast-math

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.53 static const char RCSid[] = "$Id: normal.c,v 2.52 2010/05/07 15:44:52 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * normal.c - shading function for normal materials.
6     *
7     * 8/19/85
8     * 12/19/85 - added stuff for metals.
9     * 6/26/87 - improved specular model.
10     * 9/28/87 - added model for translucent materials.
11 greg 2.2 * Later changes described in delta comments.
12 greg 1.1 */
13    
14 greg 2.39 #include "copyright.h"
15 greg 2.38
16 greg 1.1 #include "ray.h"
17 greg 2.46 #include "ambient.h"
18 schorsch 2.47 #include "source.h"
19 greg 1.1 #include "otypes.h"
20 schorsch 2.47 #include "rtotypes.h"
21 greg 2.2 #include "random.h"
22    
23 greg 2.34 #ifndef MAXITER
24     #define MAXITER 10 /* maximum # specular ray attempts */
25     #endif
26 greg 2.38 /* estimate of Fresnel function */
27 greg 2.44 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28 greg 2.51 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
29 greg 2.34
30 greg 2.24
31 greg 1.1 /*
32 greg 2.22 * This routine implements the isotropic Gaussian
33     * model described by Ward in Siggraph `92 article.
34 greg 1.1 * We orient the surface towards the incoming ray, so a single
35     * surface can be used to represent an infinitely thin object.
36     *
37     * Arguments for MAT_PLASTIC and MAT_METAL are:
38     * red grn blu specular-frac. facet-slope
39     *
40     * Arguments for MAT_TRANS are:
41     * red grn blu rspec rough trans tspec
42     */
43    
44 greg 2.2 /* specularity flags */
45     #define SP_REFL 01 /* has reflected specular component */
46     #define SP_TRAN 02 /* has transmitted specular */
47 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
48     #define SP_FLAT 010 /* flat reflecting surface */
49     #define SP_RBLT 020 /* reflection below sample threshold */
50     #define SP_TBLT 040 /* transmission below threshold */
51 greg 1.1
52 greg 1.3 typedef struct {
53     OBJREC *mp; /* material pointer */
54 greg 2.16 RAY *rp; /* ray pointer */
55 greg 2.2 short specfl; /* specularity flags, defined above */
56 greg 1.1 COLOR mcolor; /* color of this material */
57     COLOR scolor; /* color of specular component */
58     FVECT vrefl; /* vector in direction of reflected ray */
59 greg 1.14 FVECT prdir; /* vector in transmitted direction */
60 greg 2.2 double alpha2; /* roughness squared */
61 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
62     double trans; /* transmissivity */
63     double tdiff, tspec; /* transmitted specular, diffuse */
64     FVECT pnorm; /* perturbed surface normal */
65     double pdot; /* perturbed dot product */
66 greg 1.3 } NORMDAT; /* normal material data */
67    
68 schorsch 2.47 static srcdirf_t dirnorm;
69     static void gaussamp(RAY *r, NORMDAT *np);
70    
71 greg 1.3
72 greg 2.38 static void
73 schorsch 2.47 dirnorm( /* compute source contribution */
74     COLOR cval, /* returned coefficient */
75     void *nnp, /* material data */
76     FVECT ldir, /* light source direction */
77     double omega /* light source size */
78     )
79 greg 1.3 {
80 schorsch 2.47 register NORMDAT *np = nnp;
81 greg 1.1 double ldot;
82 greg 2.49 double lrdiff, ltdiff;
83 greg 2.16 double dtmp, d2;
84     FVECT vtmp;
85 greg 1.3 COLOR ctmp;
86    
87     setcolor(cval, 0.0, 0.0, 0.0);
88    
89     ldot = DOT(np->pnorm, ldir);
90    
91     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
92     return; /* wrong side */
93    
94 greg 2.38 /* Fresnel estimate */
95 greg 2.49 lrdiff = np->rdiff;
96     ltdiff = np->tdiff;
97 greg 2.51 if (np->specfl & SP_PURE && np->rspec >= FRESTHRESH &&
98 greg 2.49 (lrdiff > FTINY) | (ltdiff > FTINY)) {
99     dtmp = 1. - FRESNE(fabs(ldot));
100     lrdiff *= dtmp;
101     ltdiff *= dtmp;
102     }
103 greg 2.38
104 greg 2.49 if (ldot > FTINY && lrdiff > FTINY) {
105 greg 1.3 /*
106 greg 1.4 * Compute and add diffuse reflected component to returned
107     * color. The diffuse reflected component will always be
108     * modified by the color of the material.
109 greg 1.3 */
110     copycolor(ctmp, np->mcolor);
111 greg 2.49 dtmp = ldot * omega * lrdiff * (1.0/PI);
112 greg 1.3 scalecolor(ctmp, dtmp);
113     addcolor(cval, ctmp);
114     }
115 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
116 greg 1.3 /*
117     * Compute specular reflection coefficient using
118     * gaussian distribution model.
119     */
120 greg 2.3 /* roughness */
121 greg 2.16 dtmp = np->alpha2;
122 greg 2.3 /* + source if flat */
123     if (np->specfl & SP_FLAT)
124 greg 2.48 dtmp += omega * (0.25/PI);
125 greg 2.23 /* half vector */
126 greg 2.18 vtmp[0] = ldir[0] - np->rp->rdir[0];
127     vtmp[1] = ldir[1] - np->rp->rdir[1];
128     vtmp[2] = ldir[2] - np->rp->rdir[2];
129 greg 2.16 d2 = DOT(vtmp, np->pnorm);
130 greg 2.23 d2 *= d2;
131     d2 = (DOT(vtmp,vtmp) - d2) / d2;
132 greg 1.3 /* gaussian */
133 greg 2.48 dtmp = exp(-d2/dtmp)/(4.*PI * np->pdot * dtmp);
134 greg 1.3 /* worth using? */
135     if (dtmp > FTINY) {
136     copycolor(ctmp, np->scolor);
137 greg 2.48 dtmp *= omega;
138 greg 1.3 scalecolor(ctmp, dtmp);
139     addcolor(cval, ctmp);
140     }
141     }
142 greg 2.49 if (ldot < -FTINY && ltdiff > FTINY) {
143 greg 1.3 /*
144     * Compute diffuse transmission.
145     */
146     copycolor(ctmp, np->mcolor);
147 greg 2.49 dtmp = -ldot * omega * ltdiff * (1.0/PI);
148 greg 1.3 scalecolor(ctmp, dtmp);
149     addcolor(cval, ctmp);
150     }
151 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
152 greg 1.3 /*
153 greg 1.4 * Compute specular transmission. Specular transmission
154 greg 1.13 * is always modified by material color.
155 greg 1.3 */
156     /* roughness + source */
157 greg 2.48 dtmp = np->alpha2 + omega*(1.0/PI);
158 greg 1.3 /* gaussian */
159 greg 2.53 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
160 greg 1.3 /* worth using? */
161     if (dtmp > FTINY) {
162 greg 1.13 copycolor(ctmp, np->mcolor);
163 greg 2.52 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
164 greg 1.13 scalecolor(ctmp, dtmp);
165 greg 1.3 addcolor(cval, ctmp);
166     }
167     }
168     }
169    
170    
171 schorsch 2.47 extern int
172     m_normal( /* color a ray that hit something normal */
173     register OBJREC *m,
174     register RAY *r
175     )
176 greg 1.3 {
177     NORMDAT nd;
178 greg 2.38 double fest;
179 greg 1.9 double transtest, transdist;
180 greg 2.29 double mirtest, mirdist;
181     int hastexture;
182     double d;
183 greg 1.1 COLOR ctmp;
184     register int i;
185     /* easy shadow test */
186     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
187 greg 2.27 return(1);
188 greg 2.2
189     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
190     objerror(m, USER, "bad number of arguments");
191 greg 2.29 /* check for back side */
192     if (r->rod < 0.0) {
193     if (!backvis && m->otype != MAT_TRANS) {
194     raytrans(r);
195     return(1);
196     }
197 greg 2.40 raytexture(r, m->omod);
198 greg 2.29 flipsurface(r); /* reorient if backvis */
199 greg 2.40 } else
200     raytexture(r, m->omod);
201 greg 1.3 nd.mp = m;
202 greg 2.16 nd.rp = r;
203 greg 1.1 /* get material color */
204 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
205 greg 1.1 m->oargs.farg[1],
206     m->oargs.farg[2]);
207     /* get roughness */
208 greg 2.2 nd.specfl = 0;
209 greg 1.3 nd.alpha2 = m->oargs.farg[4];
210 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
211     nd.specfl |= SP_PURE;
212 greg 2.40
213 schorsch 2.45 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
214 greg 2.29 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
215 greg 2.41 } else {
216 greg 2.29 VCOPY(nd.pnorm, r->ron);
217     nd.pdot = r->rod;
218     }
219 greg 2.42 if (r->ro != NULL && isflat(r->ro->otype))
220     nd.specfl |= SP_FLAT;
221 greg 1.13 if (nd.pdot < .001)
222     nd.pdot = .001; /* non-zero for dirnorm() */
223 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
224 greg 2.29 mirtest = transtest = 0;
225     mirdist = transdist = r->rot;
226 greg 2.30 nd.rspec = m->oargs.farg[3];
227 greg 2.38 /* compute Fresnel approx. */
228 greg 2.51 if (nd.specfl & SP_PURE && nd.rspec >= FRESTHRESH) {
229 greg 2.38 fest = FRESNE(r->rod);
230     nd.rspec += fest*(1. - nd.rspec);
231     } else
232     fest = 0.;
233 greg 1.3 /* compute transmission */
234 greg 1.1 if (m->otype == MAT_TRANS) {
235 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
236     nd.tspec = nd.trans * m->oargs.farg[6];
237     nd.tdiff = nd.trans - nd.tspec;
238 greg 2.2 if (nd.tspec > FTINY) {
239     nd.specfl |= SP_TRAN;
240 greg 2.5 /* check threshold */
241 greg 2.25 if (!(nd.specfl & SP_PURE) &&
242     specthresh >= nd.tspec-FTINY)
243 greg 2.5 nd.specfl |= SP_TBLT;
244 greg 2.29 if (!hastexture || r->crtype & SHADOW) {
245 greg 2.2 VCOPY(nd.prdir, r->rdir);
246     transtest = 2;
247     } else {
248     for (i = 0; i < 3; i++) /* perturb */
249 greg 2.19 nd.prdir[i] = r->rdir[i] - r->pert[i];
250 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
251     normalize(nd.prdir); /* OK */
252     else
253     VCOPY(nd.prdir, r->rdir);
254 greg 2.2 }
255 greg 1.14 }
256 greg 1.1 } else
257 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
258 greg 1.1 /* transmitted ray */
259 gregl 2.36 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
260 greg 1.3 RAY lr;
261 greg 2.50 copycolor(lr.rcoef, nd.mcolor); /* modified by color */
262     scalecolor(lr.rcoef, nd.tspec);
263     if (rayorigin(&lr, TRANS, r, lr.rcoef) == 0) {
264 greg 1.14 VCOPY(lr.rdir, nd.prdir);
265 greg 1.1 rayvalue(&lr);
266 greg 2.50 multcolor(lr.rcol, lr.rcoef);
267 greg 1.1 addcolor(r->rcol, lr.rcol);
268 greg 1.9 transtest *= bright(lr.rcol);
269     transdist = r->rot + lr.rt;
270 greg 1.1 }
271 greg 2.11 } else
272     transtest = 0;
273 greg 2.2
274 greg 2.29 if (r->crtype & SHADOW) { /* the rest is shadow */
275     r->rt = transdist;
276 greg 2.27 return(1);
277 greg 2.30 }
278     /* get specular reflection */
279     if (nd.rspec > FTINY) {
280     nd.specfl |= SP_REFL;
281     /* compute specular color */
282 greg 2.38 if (m->otype != MAT_METAL) {
283     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
284     } else if (fest > FTINY) {
285     d = nd.rspec*(1. - fest);
286     for (i = 0; i < 3; i++)
287     nd.scolor[i] = fest + nd.mcolor[i]*d;
288     } else {
289 greg 2.30 copycolor(nd.scolor, nd.mcolor);
290 greg 2.38 scalecolor(nd.scolor, nd.rspec);
291     }
292 greg 2.30 /* check threshold */
293     if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
294     nd.specfl |= SP_RBLT;
295     /* compute reflected ray */
296     for (i = 0; i < 3; i++)
297     nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
298     /* penetration? */
299     if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
300     for (i = 0; i < 3; i++) /* safety measure */
301     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
302 greg 2.53 checknorm(nd.vrefl);
303 gregl 2.36 }
304     /* reflected ray */
305     if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
306     RAY lr;
307 greg 2.50 if (rayorigin(&lr, REFLECTED, r, nd.scolor) == 0) {
308 gregl 2.36 VCOPY(lr.rdir, nd.vrefl);
309     rayvalue(&lr);
310 greg 2.50 multcolor(lr.rcol, lr.rcoef);
311 gregl 2.36 addcolor(r->rcol, lr.rcol);
312     if (!hastexture && nd.specfl & SP_FLAT) {
313     mirtest = 2.*bright(lr.rcol);
314     mirdist = r->rot + lr.rt;
315 greg 2.30 }
316     }
317 greg 2.29 }
318 greg 1.1 /* diffuse reflection */
319 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
320 greg 1.1
321 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
322 greg 2.27 return(1); /* 100% pure specular */
323 greg 2.3
324 gregl 2.36 if (!(nd.specfl & SP_PURE))
325     gaussamp(r, &nd); /* checks *BLT flags */
326 greg 2.2
327 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
328 greg 2.50 copycolor(ctmp, nd.mcolor); /* modified by material color */
329 greg 2.5 if (nd.specfl & SP_RBLT)
330     scalecolor(ctmp, 1.0-nd.trans);
331     else
332     scalecolor(ctmp, nd.rdiff);
333 greg 2.50 multambient(ctmp, r, hastexture ? nd.pnorm : r->ron);
334 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
335     }
336 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
337 greg 2.50 copycolor(ctmp, nd.mcolor); /* modified by color */
338     if (nd.specfl & SP_TBLT)
339     scalecolor(ctmp, nd.trans);
340     else
341     scalecolor(ctmp, nd.tdiff);
342 greg 1.1 flipsurface(r);
343 greg 2.32 if (hastexture) {
344     FVECT bnorm;
345     bnorm[0] = -nd.pnorm[0];
346     bnorm[1] = -nd.pnorm[1];
347     bnorm[2] = -nd.pnorm[2];
348 greg 2.50 multambient(ctmp, r, bnorm);
349 greg 2.32 } else
350 greg 2.50 multambient(ctmp, r, r->ron);
351 greg 1.1 addcolor(r->rcol, ctmp);
352     flipsurface(r);
353     }
354 greg 1.3 /* add direct component */
355     direct(r, dirnorm, &nd);
356 greg 1.9 /* check distance */
357 greg 2.29 d = bright(r->rcol);
358     if (transtest > d)
359 greg 1.9 r->rt = transdist;
360 greg 2.29 else if (mirtest > d)
361     r->rt = mirdist;
362 greg 2.27
363     return(1);
364 greg 2.2 }
365    
366    
367 greg 2.38 static void
368 schorsch 2.47 gaussamp( /* sample gaussian specular */
369     RAY *r,
370     register NORMDAT *np
371     )
372 greg 2.2 {
373     RAY sr;
374     FVECT u, v, h;
375     double rv[2];
376     double d, sinp, cosp;
377 greg 2.34 int niter;
378 greg 2.2 register int i;
379 greg 2.13 /* quick test */
380     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
381     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
382     return;
383 greg 2.2 /* set up sample coordinates */
384     v[0] = v[1] = v[2] = 0.0;
385     for (i = 0; i < 3; i++)
386     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
387     break;
388     v[i] = 1.0;
389     fcross(u, v, np->pnorm);
390     normalize(u);
391     fcross(v, np->pnorm, u);
392     /* compute reflection */
393 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
394 greg 2.50 rayorigin(&sr, SPECULAR, r, np->scolor) == 0) {
395 greg 2.2 dimlist[ndims++] = (int)np->mp;
396 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
397     if (niter)
398     d = frandom();
399     else
400     d = urand(ilhash(dimlist,ndims)+samplendx);
401     multisamp(rv, 2, d);
402     d = 2.0*PI * rv[0];
403 gwlarson 2.37 cosp = tcos(d);
404     sinp = tsin(d);
405 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
406     if (rv[1] <= FTINY)
407     d = 1.0;
408     else
409     d = sqrt( np->alpha2 * -log(rv[1]) );
410     for (i = 0; i < 3; i++)
411     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
412     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
413     for (i = 0; i < 3; i++)
414     sr.rdir[i] = r->rdir[i] + d*h[i];
415     if (DOT(sr.rdir, r->ron) > FTINY) {
416     rayvalue(&sr);
417 greg 2.50 multcolor(sr.rcol, sr.rcoef);
418 greg 2.34 addcolor(r->rcol, sr.rcol);
419     break;
420     }
421     }
422 greg 2.2 ndims--;
423     }
424     /* compute transmission */
425 greg 2.50 copycolor(sr.rcoef, np->mcolor); /* modified by color */
426     scalecolor(sr.rcoef, np->tspec);
427 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
428 greg 2.50 rayorigin(&sr, SPECULAR, r, sr.rcoef) == 0) {
429 greg 2.8 dimlist[ndims++] = (int)np->mp;
430 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
431     if (niter)
432     d = frandom();
433     else
434     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
435     multisamp(rv, 2, d);
436     d = 2.0*PI * rv[0];
437 gwlarson 2.37 cosp = tcos(d);
438     sinp = tsin(d);
439 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
440     if (rv[1] <= FTINY)
441     d = 1.0;
442     else
443 gwlarson 2.37 d = sqrt( np->alpha2 * -log(rv[1]) );
444 greg 2.34 for (i = 0; i < 3; i++)
445     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
446     if (DOT(sr.rdir, r->ron) < -FTINY) {
447     normalize(sr.rdir); /* OK, normalize */
448     rayvalue(&sr);
449 greg 2.50 multcolor(sr.rcol, sr.rcoef);
450 greg 2.34 addcolor(r->rcol, sr.rcol);
451     break;
452     }
453     }
454 greg 2.8 ndims--;
455     }
456 greg 1.1 }