ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.49
Committed: Wed Jan 5 19:34:11 2005 UTC (19 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.48: +14 -9 lines
Log Message:
Fixed bug in calculation of diffuse transmission on polished "trans" surfaces

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.49 static const char RCSid[] = "$Id: normal.c,v 2.48 2004/09/20 17:32:04 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * normal.c - shading function for normal materials.
6     *
7     * 8/19/85
8     * 12/19/85 - added stuff for metals.
9     * 6/26/87 - improved specular model.
10     * 9/28/87 - added model for translucent materials.
11 greg 2.2 * Later changes described in delta comments.
12 greg 1.1 */
13    
14 greg 2.39 #include "copyright.h"
15 greg 2.38
16 greg 1.1 #include "ray.h"
17 greg 2.46 #include "ambient.h"
18 schorsch 2.47 #include "source.h"
19 greg 1.1 #include "otypes.h"
20 schorsch 2.47 #include "rtotypes.h"
21 greg 2.2 #include "random.h"
22    
23 greg 2.34 #ifndef MAXITER
24     #define MAXITER 10 /* maximum # specular ray attempts */
25     #endif
26 greg 2.38 /* estimate of Fresnel function */
27 greg 2.44 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28 greg 2.34
29 greg 2.24
30 greg 1.1 /*
31 greg 2.22 * This routine implements the isotropic Gaussian
32     * model described by Ward in Siggraph `92 article.
33 greg 1.1 * We orient the surface towards the incoming ray, so a single
34     * surface can be used to represent an infinitely thin object.
35     *
36     * Arguments for MAT_PLASTIC and MAT_METAL are:
37     * red grn blu specular-frac. facet-slope
38     *
39     * Arguments for MAT_TRANS are:
40     * red grn blu rspec rough trans tspec
41     */
42    
43 greg 2.2 /* specularity flags */
44     #define SP_REFL 01 /* has reflected specular component */
45     #define SP_TRAN 02 /* has transmitted specular */
46 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
47     #define SP_FLAT 010 /* flat reflecting surface */
48     #define SP_RBLT 020 /* reflection below sample threshold */
49     #define SP_TBLT 040 /* transmission below threshold */
50 greg 1.1
51 greg 1.3 typedef struct {
52     OBJREC *mp; /* material pointer */
53 greg 2.16 RAY *rp; /* ray pointer */
54 greg 2.2 short specfl; /* specularity flags, defined above */
55 greg 1.1 COLOR mcolor; /* color of this material */
56     COLOR scolor; /* color of specular component */
57     FVECT vrefl; /* vector in direction of reflected ray */
58 greg 1.14 FVECT prdir; /* vector in transmitted direction */
59 greg 2.2 double alpha2; /* roughness squared */
60 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
61     double trans; /* transmissivity */
62     double tdiff, tspec; /* transmitted specular, diffuse */
63     FVECT pnorm; /* perturbed surface normal */
64     double pdot; /* perturbed dot product */
65 greg 1.3 } NORMDAT; /* normal material data */
66    
67 schorsch 2.47 static srcdirf_t dirnorm;
68     static void gaussamp(RAY *r, NORMDAT *np);
69    
70 greg 1.3
71 greg 2.38 static void
72 schorsch 2.47 dirnorm( /* compute source contribution */
73     COLOR cval, /* returned coefficient */
74     void *nnp, /* material data */
75     FVECT ldir, /* light source direction */
76     double omega /* light source size */
77     )
78 greg 1.3 {
79 schorsch 2.47 register NORMDAT *np = nnp;
80 greg 1.1 double ldot;
81 greg 2.49 double lrdiff, ltdiff;
82 greg 2.16 double dtmp, d2;
83     FVECT vtmp;
84 greg 1.3 COLOR ctmp;
85    
86     setcolor(cval, 0.0, 0.0, 0.0);
87    
88     ldot = DOT(np->pnorm, ldir);
89    
90     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
91     return; /* wrong side */
92    
93 greg 2.38 /* Fresnel estimate */
94 greg 2.49 lrdiff = np->rdiff;
95     ltdiff = np->tdiff;
96     if (np->specfl & SP_PURE && np->rspec > FTINY &&
97     (lrdiff > FTINY) | (ltdiff > FTINY)) {
98     dtmp = 1. - FRESNE(fabs(ldot));
99     lrdiff *= dtmp;
100     ltdiff *= dtmp;
101     }
102 greg 2.38
103 greg 2.49 if (ldot > FTINY && lrdiff > FTINY) {
104 greg 1.3 /*
105 greg 1.4 * Compute and add diffuse reflected component to returned
106     * color. The diffuse reflected component will always be
107     * modified by the color of the material.
108 greg 1.3 */
109     copycolor(ctmp, np->mcolor);
110 greg 2.49 dtmp = ldot * omega * lrdiff * (1.0/PI);
111 greg 1.3 scalecolor(ctmp, dtmp);
112     addcolor(cval, ctmp);
113     }
114 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
115 greg 1.3 /*
116     * Compute specular reflection coefficient using
117     * gaussian distribution model.
118     */
119 greg 2.3 /* roughness */
120 greg 2.16 dtmp = np->alpha2;
121 greg 2.3 /* + source if flat */
122     if (np->specfl & SP_FLAT)
123 greg 2.48 dtmp += omega * (0.25/PI);
124 greg 2.23 /* half vector */
125 greg 2.18 vtmp[0] = ldir[0] - np->rp->rdir[0];
126     vtmp[1] = ldir[1] - np->rp->rdir[1];
127     vtmp[2] = ldir[2] - np->rp->rdir[2];
128 greg 2.16 d2 = DOT(vtmp, np->pnorm);
129 greg 2.23 d2 *= d2;
130     d2 = (DOT(vtmp,vtmp) - d2) / d2;
131 greg 1.3 /* gaussian */
132 greg 2.48 dtmp = exp(-d2/dtmp)/(4.*PI * np->pdot * dtmp);
133 greg 1.3 /* worth using? */
134     if (dtmp > FTINY) {
135     copycolor(ctmp, np->scolor);
136 greg 2.48 dtmp *= omega;
137 greg 1.3 scalecolor(ctmp, dtmp);
138     addcolor(cval, ctmp);
139     }
140     }
141 greg 2.49 if (ldot < -FTINY && ltdiff > FTINY) {
142 greg 1.3 /*
143     * Compute diffuse transmission.
144     */
145     copycolor(ctmp, np->mcolor);
146 greg 2.49 dtmp = -ldot * omega * ltdiff * (1.0/PI);
147 greg 1.3 scalecolor(ctmp, dtmp);
148     addcolor(cval, ctmp);
149     }
150 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
151 greg 1.3 /*
152 greg 1.4 * Compute specular transmission. Specular transmission
153 greg 1.13 * is always modified by material color.
154 greg 1.3 */
155     /* roughness + source */
156 greg 2.48 dtmp = np->alpha2 + omega*(1.0/PI);
157 greg 1.3 /* gaussian */
158 greg 2.48 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp) /
159     (PI*np->pdot*dtmp);
160 greg 1.3 /* worth using? */
161     if (dtmp > FTINY) {
162 greg 1.13 copycolor(ctmp, np->mcolor);
163 greg 2.48 dtmp *= np->tspec * omega;
164 greg 1.13 scalecolor(ctmp, dtmp);
165 greg 1.3 addcolor(cval, ctmp);
166     }
167     }
168     }
169    
170    
171 schorsch 2.47 extern int
172     m_normal( /* color a ray that hit something normal */
173     register OBJREC *m,
174     register RAY *r
175     )
176 greg 1.3 {
177     NORMDAT nd;
178 greg 2.38 double fest;
179 greg 1.9 double transtest, transdist;
180 greg 2.29 double mirtest, mirdist;
181     int hastexture;
182     double d;
183 greg 1.1 COLOR ctmp;
184     register int i;
185     /* easy shadow test */
186     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
187 greg 2.27 return(1);
188 greg 2.2
189     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
190     objerror(m, USER, "bad number of arguments");
191 greg 2.29 /* check for back side */
192     if (r->rod < 0.0) {
193     if (!backvis && m->otype != MAT_TRANS) {
194     raytrans(r);
195     return(1);
196     }
197 greg 2.40 raytexture(r, m->omod);
198 greg 2.29 flipsurface(r); /* reorient if backvis */
199 greg 2.40 } else
200     raytexture(r, m->omod);
201 greg 1.3 nd.mp = m;
202 greg 2.16 nd.rp = r;
203 greg 1.1 /* get material color */
204 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
205 greg 1.1 m->oargs.farg[1],
206     m->oargs.farg[2]);
207     /* get roughness */
208 greg 2.2 nd.specfl = 0;
209 greg 1.3 nd.alpha2 = m->oargs.farg[4];
210 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
211     nd.specfl |= SP_PURE;
212 greg 2.40
213 schorsch 2.45 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
214 greg 2.29 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
215 greg 2.41 } else {
216 greg 2.29 VCOPY(nd.pnorm, r->ron);
217     nd.pdot = r->rod;
218     }
219 greg 2.42 if (r->ro != NULL && isflat(r->ro->otype))
220     nd.specfl |= SP_FLAT;
221 greg 1.13 if (nd.pdot < .001)
222     nd.pdot = .001; /* non-zero for dirnorm() */
223 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
224 greg 2.29 mirtest = transtest = 0;
225     mirdist = transdist = r->rot;
226 greg 2.30 nd.rspec = m->oargs.farg[3];
227 greg 2.38 /* compute Fresnel approx. */
228     if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
229     fest = FRESNE(r->rod);
230     nd.rspec += fest*(1. - nd.rspec);
231     } else
232     fest = 0.;
233 greg 1.3 /* compute transmission */
234 greg 1.1 if (m->otype == MAT_TRANS) {
235 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
236     nd.tspec = nd.trans * m->oargs.farg[6];
237     nd.tdiff = nd.trans - nd.tspec;
238 greg 2.2 if (nd.tspec > FTINY) {
239     nd.specfl |= SP_TRAN;
240 greg 2.5 /* check threshold */
241 greg 2.25 if (!(nd.specfl & SP_PURE) &&
242     specthresh >= nd.tspec-FTINY)
243 greg 2.5 nd.specfl |= SP_TBLT;
244 greg 2.29 if (!hastexture || r->crtype & SHADOW) {
245 greg 2.2 VCOPY(nd.prdir, r->rdir);
246     transtest = 2;
247     } else {
248     for (i = 0; i < 3; i++) /* perturb */
249 greg 2.19 nd.prdir[i] = r->rdir[i] - r->pert[i];
250 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
251     normalize(nd.prdir); /* OK */
252     else
253     VCOPY(nd.prdir, r->rdir);
254 greg 2.2 }
255 greg 1.14 }
256 greg 1.1 } else
257 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
258 greg 1.1 /* transmitted ray */
259 gregl 2.36 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
260 greg 1.3 RAY lr;
261     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
262 greg 1.14 VCOPY(lr.rdir, nd.prdir);
263 greg 1.1 rayvalue(&lr);
264 greg 1.3 scalecolor(lr.rcol, nd.tspec);
265 greg 1.8 multcolor(lr.rcol, nd.mcolor); /* modified by color */
266 greg 1.1 addcolor(r->rcol, lr.rcol);
267 greg 1.9 transtest *= bright(lr.rcol);
268     transdist = r->rot + lr.rt;
269 greg 1.1 }
270 greg 2.11 } else
271     transtest = 0;
272 greg 2.2
273 greg 2.29 if (r->crtype & SHADOW) { /* the rest is shadow */
274     r->rt = transdist;
275 greg 2.27 return(1);
276 greg 2.30 }
277     /* get specular reflection */
278     if (nd.rspec > FTINY) {
279     nd.specfl |= SP_REFL;
280     /* compute specular color */
281 greg 2.38 if (m->otype != MAT_METAL) {
282     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
283     } else if (fest > FTINY) {
284     d = nd.rspec*(1. - fest);
285     for (i = 0; i < 3; i++)
286     nd.scolor[i] = fest + nd.mcolor[i]*d;
287     } else {
288 greg 2.30 copycolor(nd.scolor, nd.mcolor);
289 greg 2.38 scalecolor(nd.scolor, nd.rspec);
290     }
291 greg 2.30 /* check threshold */
292     if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
293     nd.specfl |= SP_RBLT;
294     /* compute reflected ray */
295     for (i = 0; i < 3; i++)
296     nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
297     /* penetration? */
298     if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
299     for (i = 0; i < 3; i++) /* safety measure */
300     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
301 gregl 2.36 }
302     /* reflected ray */
303     if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
304     RAY lr;
305     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
306     VCOPY(lr.rdir, nd.vrefl);
307     rayvalue(&lr);
308     multcolor(lr.rcol, nd.scolor);
309     addcolor(r->rcol, lr.rcol);
310     if (!hastexture && nd.specfl & SP_FLAT) {
311     mirtest = 2.*bright(lr.rcol);
312     mirdist = r->rot + lr.rt;
313 greg 2.30 }
314     }
315 greg 2.29 }
316 greg 1.1 /* diffuse reflection */
317 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
318 greg 1.1
319 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
320 greg 2.27 return(1); /* 100% pure specular */
321 greg 2.3
322 gregl 2.36 if (!(nd.specfl & SP_PURE))
323     gaussamp(r, &nd); /* checks *BLT flags */
324 greg 2.2
325 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
326 greg 2.31 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
327 greg 2.5 if (nd.specfl & SP_RBLT)
328     scalecolor(ctmp, 1.0-nd.trans);
329     else
330     scalecolor(ctmp, nd.rdiff);
331 greg 1.3 multcolor(ctmp, nd.mcolor); /* modified by material color */
332 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
333     }
334 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
335 greg 1.1 flipsurface(r);
336 greg 2.32 if (hastexture) {
337     FVECT bnorm;
338     bnorm[0] = -nd.pnorm[0];
339     bnorm[1] = -nd.pnorm[1];
340     bnorm[2] = -nd.pnorm[2];
341     ambient(ctmp, r, bnorm);
342     } else
343     ambient(ctmp, r, r->ron);
344 greg 2.5 if (nd.specfl & SP_TBLT)
345     scalecolor(ctmp, nd.trans);
346     else
347     scalecolor(ctmp, nd.tdiff);
348 greg 1.13 multcolor(ctmp, nd.mcolor); /* modified by color */
349 greg 1.1 addcolor(r->rcol, ctmp);
350     flipsurface(r);
351     }
352 greg 1.3 /* add direct component */
353     direct(r, dirnorm, &nd);
354 greg 1.9 /* check distance */
355 greg 2.29 d = bright(r->rcol);
356     if (transtest > d)
357 greg 1.9 r->rt = transdist;
358 greg 2.29 else if (mirtest > d)
359     r->rt = mirdist;
360 greg 2.27
361     return(1);
362 greg 2.2 }
363    
364    
365 greg 2.38 static void
366 schorsch 2.47 gaussamp( /* sample gaussian specular */
367     RAY *r,
368     register NORMDAT *np
369     )
370 greg 2.2 {
371     RAY sr;
372     FVECT u, v, h;
373     double rv[2];
374     double d, sinp, cosp;
375 greg 2.34 int niter;
376 greg 2.2 register int i;
377 greg 2.13 /* quick test */
378     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
379     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
380     return;
381 greg 2.2 /* set up sample coordinates */
382     v[0] = v[1] = v[2] = 0.0;
383     for (i = 0; i < 3; i++)
384     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
385     break;
386     v[i] = 1.0;
387     fcross(u, v, np->pnorm);
388     normalize(u);
389     fcross(v, np->pnorm, u);
390     /* compute reflection */
391 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
392 greg 2.2 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
393     dimlist[ndims++] = (int)np->mp;
394 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
395     if (niter)
396     d = frandom();
397     else
398     d = urand(ilhash(dimlist,ndims)+samplendx);
399     multisamp(rv, 2, d);
400     d = 2.0*PI * rv[0];
401 gwlarson 2.37 cosp = tcos(d);
402     sinp = tsin(d);
403 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
404     if (rv[1] <= FTINY)
405     d = 1.0;
406     else
407     d = sqrt( np->alpha2 * -log(rv[1]) );
408     for (i = 0; i < 3; i++)
409     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
410     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
411     for (i = 0; i < 3; i++)
412     sr.rdir[i] = r->rdir[i] + d*h[i];
413     if (DOT(sr.rdir, r->ron) > FTINY) {
414     rayvalue(&sr);
415     multcolor(sr.rcol, np->scolor);
416     addcolor(r->rcol, sr.rcol);
417     break;
418     }
419     }
420 greg 2.2 ndims--;
421     }
422     /* compute transmission */
423 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
424     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
425     dimlist[ndims++] = (int)np->mp;
426 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
427     if (niter)
428     d = frandom();
429     else
430     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
431     multisamp(rv, 2, d);
432     d = 2.0*PI * rv[0];
433 gwlarson 2.37 cosp = tcos(d);
434     sinp = tsin(d);
435 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
436     if (rv[1] <= FTINY)
437     d = 1.0;
438     else
439 gwlarson 2.37 d = sqrt( np->alpha2 * -log(rv[1]) );
440 greg 2.34 for (i = 0; i < 3; i++)
441     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
442     if (DOT(sr.rdir, r->ron) < -FTINY) {
443     normalize(sr.rdir); /* OK, normalize */
444     rayvalue(&sr);
445     scalecolor(sr.rcol, np->tspec);
446     multcolor(sr.rcol, np->mcolor); /* modified */
447     addcolor(r->rcol, sr.rcol);
448     break;
449     }
450     }
451 greg 2.8 ndims--;
452     }
453 greg 1.1 }