ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.48
Committed: Mon Sep 20 17:32:04 2004 UTC (19 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R6, rad3R6P1
Changes since 2.47: +10 -9 lines
Log Message:
Corrected Gaussian reflectance model normalization (cosine factor)

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.48 static const char RCSid[] = "$Id: normal.c,v 2.47 2004/03/30 16:13:01 schorsch Exp $";
3 greg 1.1 #endif
4     /*
5     * normal.c - shading function for normal materials.
6     *
7     * 8/19/85
8     * 12/19/85 - added stuff for metals.
9     * 6/26/87 - improved specular model.
10     * 9/28/87 - added model for translucent materials.
11 greg 2.2 * Later changes described in delta comments.
12 greg 1.1 */
13    
14 greg 2.39 #include "copyright.h"
15 greg 2.38
16 greg 1.1 #include "ray.h"
17 greg 2.46 #include "ambient.h"
18 schorsch 2.47 #include "source.h"
19 greg 1.1 #include "otypes.h"
20 schorsch 2.47 #include "rtotypes.h"
21 greg 2.2 #include "random.h"
22    
23 greg 2.34 #ifndef MAXITER
24     #define MAXITER 10 /* maximum # specular ray attempts */
25     #endif
26 greg 2.38 /* estimate of Fresnel function */
27 greg 2.44 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28 greg 2.34
29 greg 2.24
30 greg 1.1 /*
31 greg 2.22 * This routine implements the isotropic Gaussian
32     * model described by Ward in Siggraph `92 article.
33 greg 1.1 * We orient the surface towards the incoming ray, so a single
34     * surface can be used to represent an infinitely thin object.
35     *
36     * Arguments for MAT_PLASTIC and MAT_METAL are:
37     * red grn blu specular-frac. facet-slope
38     *
39     * Arguments for MAT_TRANS are:
40     * red grn blu rspec rough trans tspec
41     */
42    
43 greg 2.2 /* specularity flags */
44     #define SP_REFL 01 /* has reflected specular component */
45     #define SP_TRAN 02 /* has transmitted specular */
46 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
47     #define SP_FLAT 010 /* flat reflecting surface */
48     #define SP_RBLT 020 /* reflection below sample threshold */
49     #define SP_TBLT 040 /* transmission below threshold */
50 greg 1.1
51 greg 1.3 typedef struct {
52     OBJREC *mp; /* material pointer */
53 greg 2.16 RAY *rp; /* ray pointer */
54 greg 2.2 short specfl; /* specularity flags, defined above */
55 greg 1.1 COLOR mcolor; /* color of this material */
56     COLOR scolor; /* color of specular component */
57     FVECT vrefl; /* vector in direction of reflected ray */
58 greg 1.14 FVECT prdir; /* vector in transmitted direction */
59 greg 2.2 double alpha2; /* roughness squared */
60 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
61     double trans; /* transmissivity */
62     double tdiff, tspec; /* transmitted specular, diffuse */
63     FVECT pnorm; /* perturbed surface normal */
64     double pdot; /* perturbed dot product */
65 greg 1.3 } NORMDAT; /* normal material data */
66    
67 schorsch 2.47 static srcdirf_t dirnorm;
68     static void gaussamp(RAY *r, NORMDAT *np);
69    
70 greg 1.3
71 greg 2.38 static void
72 schorsch 2.47 dirnorm( /* compute source contribution */
73     COLOR cval, /* returned coefficient */
74     void *nnp, /* material data */
75     FVECT ldir, /* light source direction */
76     double omega /* light source size */
77     )
78 greg 1.3 {
79 schorsch 2.47 register NORMDAT *np = nnp;
80 greg 1.1 double ldot;
81 greg 2.38 double ldiff;
82 greg 2.16 double dtmp, d2;
83     FVECT vtmp;
84 greg 1.3 COLOR ctmp;
85    
86     setcolor(cval, 0.0, 0.0, 0.0);
87    
88     ldot = DOT(np->pnorm, ldir);
89    
90     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
91     return; /* wrong side */
92    
93 greg 2.38 /* Fresnel estimate */
94     ldiff = np->rdiff;
95 schorsch 2.45 if (np->specfl & SP_PURE && (np->rspec > FTINY) & (ldiff > FTINY))
96 greg 2.38 ldiff *= 1. - FRESNE(fabs(ldot));
97    
98     if (ldot > FTINY && ldiff > FTINY) {
99 greg 1.3 /*
100 greg 1.4 * Compute and add diffuse reflected component to returned
101     * color. The diffuse reflected component will always be
102     * modified by the color of the material.
103 greg 1.3 */
104     copycolor(ctmp, np->mcolor);
105 greg 2.48 dtmp = ldot * omega * ldiff * (1.0/PI);
106 greg 1.3 scalecolor(ctmp, dtmp);
107     addcolor(cval, ctmp);
108     }
109 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
110 greg 1.3 /*
111     * Compute specular reflection coefficient using
112     * gaussian distribution model.
113     */
114 greg 2.3 /* roughness */
115 greg 2.16 dtmp = np->alpha2;
116 greg 2.3 /* + source if flat */
117     if (np->specfl & SP_FLAT)
118 greg 2.48 dtmp += omega * (0.25/PI);
119 greg 2.23 /* half vector */
120 greg 2.18 vtmp[0] = ldir[0] - np->rp->rdir[0];
121     vtmp[1] = ldir[1] - np->rp->rdir[1];
122     vtmp[2] = ldir[2] - np->rp->rdir[2];
123 greg 2.16 d2 = DOT(vtmp, np->pnorm);
124 greg 2.23 d2 *= d2;
125     d2 = (DOT(vtmp,vtmp) - d2) / d2;
126 greg 1.3 /* gaussian */
127 greg 2.48 dtmp = exp(-d2/dtmp)/(4.*PI * np->pdot * dtmp);
128 greg 1.3 /* worth using? */
129     if (dtmp > FTINY) {
130     copycolor(ctmp, np->scolor);
131 greg 2.48 dtmp *= omega;
132 greg 1.3 scalecolor(ctmp, dtmp);
133     addcolor(cval, ctmp);
134     }
135     }
136     if (ldot < -FTINY && np->tdiff > FTINY) {
137     /*
138     * Compute diffuse transmission.
139     */
140     copycolor(ctmp, np->mcolor);
141 greg 2.48 dtmp = -ldot * omega * np->tdiff * (1.0/PI);
142 greg 1.3 scalecolor(ctmp, dtmp);
143     addcolor(cval, ctmp);
144     }
145 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
146 greg 1.3 /*
147 greg 1.4 * Compute specular transmission. Specular transmission
148 greg 1.13 * is always modified by material color.
149 greg 1.3 */
150     /* roughness + source */
151 greg 2.48 dtmp = np->alpha2 + omega*(1.0/PI);
152 greg 1.3 /* gaussian */
153 greg 2.48 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp) /
154     (PI*np->pdot*dtmp);
155 greg 1.3 /* worth using? */
156     if (dtmp > FTINY) {
157 greg 1.13 copycolor(ctmp, np->mcolor);
158 greg 2.48 dtmp *= np->tspec * omega;
159 greg 1.13 scalecolor(ctmp, dtmp);
160 greg 1.3 addcolor(cval, ctmp);
161     }
162     }
163     }
164    
165    
166 schorsch 2.47 extern int
167     m_normal( /* color a ray that hit something normal */
168     register OBJREC *m,
169     register RAY *r
170     )
171 greg 1.3 {
172     NORMDAT nd;
173 greg 2.38 double fest;
174 greg 1.9 double transtest, transdist;
175 greg 2.29 double mirtest, mirdist;
176     int hastexture;
177     double d;
178 greg 1.1 COLOR ctmp;
179     register int i;
180     /* easy shadow test */
181     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
182 greg 2.27 return(1);
183 greg 2.2
184     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
185     objerror(m, USER, "bad number of arguments");
186 greg 2.29 /* check for back side */
187     if (r->rod < 0.0) {
188     if (!backvis && m->otype != MAT_TRANS) {
189     raytrans(r);
190     return(1);
191     }
192 greg 2.40 raytexture(r, m->omod);
193 greg 2.29 flipsurface(r); /* reorient if backvis */
194 greg 2.40 } else
195     raytexture(r, m->omod);
196 greg 1.3 nd.mp = m;
197 greg 2.16 nd.rp = r;
198 greg 1.1 /* get material color */
199 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
200 greg 1.1 m->oargs.farg[1],
201     m->oargs.farg[2]);
202     /* get roughness */
203 greg 2.2 nd.specfl = 0;
204 greg 1.3 nd.alpha2 = m->oargs.farg[4];
205 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
206     nd.specfl |= SP_PURE;
207 greg 2.40
208 schorsch 2.45 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
209 greg 2.29 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
210 greg 2.41 } else {
211 greg 2.29 VCOPY(nd.pnorm, r->ron);
212     nd.pdot = r->rod;
213     }
214 greg 2.42 if (r->ro != NULL && isflat(r->ro->otype))
215     nd.specfl |= SP_FLAT;
216 greg 1.13 if (nd.pdot < .001)
217     nd.pdot = .001; /* non-zero for dirnorm() */
218 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
219 greg 2.29 mirtest = transtest = 0;
220     mirdist = transdist = r->rot;
221 greg 2.30 nd.rspec = m->oargs.farg[3];
222 greg 2.38 /* compute Fresnel approx. */
223     if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
224     fest = FRESNE(r->rod);
225     nd.rspec += fest*(1. - nd.rspec);
226     } else
227     fest = 0.;
228 greg 1.3 /* compute transmission */
229 greg 1.1 if (m->otype == MAT_TRANS) {
230 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
231     nd.tspec = nd.trans * m->oargs.farg[6];
232     nd.tdiff = nd.trans - nd.tspec;
233 greg 2.2 if (nd.tspec > FTINY) {
234     nd.specfl |= SP_TRAN;
235 greg 2.5 /* check threshold */
236 greg 2.25 if (!(nd.specfl & SP_PURE) &&
237     specthresh >= nd.tspec-FTINY)
238 greg 2.5 nd.specfl |= SP_TBLT;
239 greg 2.29 if (!hastexture || r->crtype & SHADOW) {
240 greg 2.2 VCOPY(nd.prdir, r->rdir);
241     transtest = 2;
242     } else {
243     for (i = 0; i < 3; i++) /* perturb */
244 greg 2.19 nd.prdir[i] = r->rdir[i] - r->pert[i];
245 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
246     normalize(nd.prdir); /* OK */
247     else
248     VCOPY(nd.prdir, r->rdir);
249 greg 2.2 }
250 greg 1.14 }
251 greg 1.1 } else
252 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
253 greg 1.1 /* transmitted ray */
254 gregl 2.36 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
255 greg 1.3 RAY lr;
256     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
257 greg 1.14 VCOPY(lr.rdir, nd.prdir);
258 greg 1.1 rayvalue(&lr);
259 greg 1.3 scalecolor(lr.rcol, nd.tspec);
260 greg 1.8 multcolor(lr.rcol, nd.mcolor); /* modified by color */
261 greg 1.1 addcolor(r->rcol, lr.rcol);
262 greg 1.9 transtest *= bright(lr.rcol);
263     transdist = r->rot + lr.rt;
264 greg 1.1 }
265 greg 2.11 } else
266     transtest = 0;
267 greg 2.2
268 greg 2.29 if (r->crtype & SHADOW) { /* the rest is shadow */
269     r->rt = transdist;
270 greg 2.27 return(1);
271 greg 2.30 }
272     /* get specular reflection */
273     if (nd.rspec > FTINY) {
274     nd.specfl |= SP_REFL;
275     /* compute specular color */
276 greg 2.38 if (m->otype != MAT_METAL) {
277     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
278     } else if (fest > FTINY) {
279     d = nd.rspec*(1. - fest);
280     for (i = 0; i < 3; i++)
281     nd.scolor[i] = fest + nd.mcolor[i]*d;
282     } else {
283 greg 2.30 copycolor(nd.scolor, nd.mcolor);
284 greg 2.38 scalecolor(nd.scolor, nd.rspec);
285     }
286 greg 2.30 /* check threshold */
287     if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
288     nd.specfl |= SP_RBLT;
289     /* compute reflected ray */
290     for (i = 0; i < 3; i++)
291     nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
292     /* penetration? */
293     if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
294     for (i = 0; i < 3; i++) /* safety measure */
295     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
296 gregl 2.36 }
297     /* reflected ray */
298     if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
299     RAY lr;
300     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
301     VCOPY(lr.rdir, nd.vrefl);
302     rayvalue(&lr);
303     multcolor(lr.rcol, nd.scolor);
304     addcolor(r->rcol, lr.rcol);
305     if (!hastexture && nd.specfl & SP_FLAT) {
306     mirtest = 2.*bright(lr.rcol);
307     mirdist = r->rot + lr.rt;
308 greg 2.30 }
309     }
310 greg 2.29 }
311 greg 1.1 /* diffuse reflection */
312 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
313 greg 1.1
314 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
315 greg 2.27 return(1); /* 100% pure specular */
316 greg 2.3
317 gregl 2.36 if (!(nd.specfl & SP_PURE))
318     gaussamp(r, &nd); /* checks *BLT flags */
319 greg 2.2
320 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
321 greg 2.31 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
322 greg 2.5 if (nd.specfl & SP_RBLT)
323     scalecolor(ctmp, 1.0-nd.trans);
324     else
325     scalecolor(ctmp, nd.rdiff);
326 greg 1.3 multcolor(ctmp, nd.mcolor); /* modified by material color */
327 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
328     }
329 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
330 greg 1.1 flipsurface(r);
331 greg 2.32 if (hastexture) {
332     FVECT bnorm;
333     bnorm[0] = -nd.pnorm[0];
334     bnorm[1] = -nd.pnorm[1];
335     bnorm[2] = -nd.pnorm[2];
336     ambient(ctmp, r, bnorm);
337     } else
338     ambient(ctmp, r, r->ron);
339 greg 2.5 if (nd.specfl & SP_TBLT)
340     scalecolor(ctmp, nd.trans);
341     else
342     scalecolor(ctmp, nd.tdiff);
343 greg 1.13 multcolor(ctmp, nd.mcolor); /* modified by color */
344 greg 1.1 addcolor(r->rcol, ctmp);
345     flipsurface(r);
346     }
347 greg 1.3 /* add direct component */
348     direct(r, dirnorm, &nd);
349 greg 1.9 /* check distance */
350 greg 2.29 d = bright(r->rcol);
351     if (transtest > d)
352 greg 1.9 r->rt = transdist;
353 greg 2.29 else if (mirtest > d)
354     r->rt = mirdist;
355 greg 2.27
356     return(1);
357 greg 2.2 }
358    
359    
360 greg 2.38 static void
361 schorsch 2.47 gaussamp( /* sample gaussian specular */
362     RAY *r,
363     register NORMDAT *np
364     )
365 greg 2.2 {
366     RAY sr;
367     FVECT u, v, h;
368     double rv[2];
369     double d, sinp, cosp;
370 greg 2.34 int niter;
371 greg 2.2 register int i;
372 greg 2.13 /* quick test */
373     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
374     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
375     return;
376 greg 2.2 /* set up sample coordinates */
377     v[0] = v[1] = v[2] = 0.0;
378     for (i = 0; i < 3; i++)
379     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
380     break;
381     v[i] = 1.0;
382     fcross(u, v, np->pnorm);
383     normalize(u);
384     fcross(v, np->pnorm, u);
385     /* compute reflection */
386 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
387 greg 2.2 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
388     dimlist[ndims++] = (int)np->mp;
389 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
390     if (niter)
391     d = frandom();
392     else
393     d = urand(ilhash(dimlist,ndims)+samplendx);
394     multisamp(rv, 2, d);
395     d = 2.0*PI * rv[0];
396 gwlarson 2.37 cosp = tcos(d);
397     sinp = tsin(d);
398 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
399     if (rv[1] <= FTINY)
400     d = 1.0;
401     else
402     d = sqrt( np->alpha2 * -log(rv[1]) );
403     for (i = 0; i < 3; i++)
404     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
405     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
406     for (i = 0; i < 3; i++)
407     sr.rdir[i] = r->rdir[i] + d*h[i];
408     if (DOT(sr.rdir, r->ron) > FTINY) {
409     rayvalue(&sr);
410     multcolor(sr.rcol, np->scolor);
411     addcolor(r->rcol, sr.rcol);
412     break;
413     }
414     }
415 greg 2.2 ndims--;
416     }
417     /* compute transmission */
418 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
419     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
420     dimlist[ndims++] = (int)np->mp;
421 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
422     if (niter)
423     d = frandom();
424     else
425     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
426     multisamp(rv, 2, d);
427     d = 2.0*PI * rv[0];
428 gwlarson 2.37 cosp = tcos(d);
429     sinp = tsin(d);
430 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
431     if (rv[1] <= FTINY)
432     d = 1.0;
433     else
434 gwlarson 2.37 d = sqrt( np->alpha2 * -log(rv[1]) );
435 greg 2.34 for (i = 0; i < 3; i++)
436     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
437     if (DOT(sr.rdir, r->ron) < -FTINY) {
438     normalize(sr.rdir); /* OK, normalize */
439     rayvalue(&sr);
440     scalecolor(sr.rcol, np->tspec);
441     multcolor(sr.rcol, np->mcolor); /* modified */
442     addcolor(r->rcol, sr.rcol);
443     break;
444     }
445     }
446 greg 2.8 ndims--;
447     }
448 greg 1.1 }