ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.47
Committed: Tue Mar 30 16:13:01 2004 UTC (20 years, 1 month ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.46: +22 -17 lines
Log Message:
Continued ANSIfication. There are only bits and pieces left now.

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 schorsch 2.47 static const char RCSid[] = "$Id: normal.c,v 2.46 2003/08/28 03:22:16 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * normal.c - shading function for normal materials.
6     *
7     * 8/19/85
8     * 12/19/85 - added stuff for metals.
9     * 6/26/87 - improved specular model.
10     * 9/28/87 - added model for translucent materials.
11 greg 2.2 * Later changes described in delta comments.
12 greg 1.1 */
13    
14 greg 2.39 #include "copyright.h"
15 greg 2.38
16 greg 1.1 #include "ray.h"
17 greg 2.46 #include "ambient.h"
18 schorsch 2.47 #include "source.h"
19 greg 1.1 #include "otypes.h"
20 schorsch 2.47 #include "rtotypes.h"
21 greg 2.2 #include "random.h"
22    
23 greg 2.34 #ifndef MAXITER
24     #define MAXITER 10 /* maximum # specular ray attempts */
25     #endif
26 greg 2.38 /* estimate of Fresnel function */
27 greg 2.44 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00287989916)
28 greg 2.34
29 greg 2.24
30 greg 1.1 /*
31 greg 2.22 * This routine implements the isotropic Gaussian
32     * model described by Ward in Siggraph `92 article.
33 greg 1.1 * We orient the surface towards the incoming ray, so a single
34     * surface can be used to represent an infinitely thin object.
35     *
36     * Arguments for MAT_PLASTIC and MAT_METAL are:
37     * red grn blu specular-frac. facet-slope
38     *
39     * Arguments for MAT_TRANS are:
40     * red grn blu rspec rough trans tspec
41     */
42    
43 greg 2.2 /* specularity flags */
44     #define SP_REFL 01 /* has reflected specular component */
45     #define SP_TRAN 02 /* has transmitted specular */
46 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
47     #define SP_FLAT 010 /* flat reflecting surface */
48     #define SP_RBLT 020 /* reflection below sample threshold */
49     #define SP_TBLT 040 /* transmission below threshold */
50 greg 1.1
51 greg 1.3 typedef struct {
52     OBJREC *mp; /* material pointer */
53 greg 2.16 RAY *rp; /* ray pointer */
54 greg 2.2 short specfl; /* specularity flags, defined above */
55 greg 1.1 COLOR mcolor; /* color of this material */
56     COLOR scolor; /* color of specular component */
57     FVECT vrefl; /* vector in direction of reflected ray */
58 greg 1.14 FVECT prdir; /* vector in transmitted direction */
59 greg 2.2 double alpha2; /* roughness squared */
60 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
61     double trans; /* transmissivity */
62     double tdiff, tspec; /* transmitted specular, diffuse */
63     FVECT pnorm; /* perturbed surface normal */
64     double pdot; /* perturbed dot product */
65 greg 1.3 } NORMDAT; /* normal material data */
66    
67 schorsch 2.47 static srcdirf_t dirnorm;
68     static void gaussamp(RAY *r, NORMDAT *np);
69    
70 greg 1.3
71 greg 2.38 static void
72 schorsch 2.47 dirnorm( /* compute source contribution */
73     COLOR cval, /* returned coefficient */
74     void *nnp, /* material data */
75     FVECT ldir, /* light source direction */
76     double omega /* light source size */
77     )
78 greg 1.3 {
79 schorsch 2.47 register NORMDAT *np = nnp;
80 greg 1.1 double ldot;
81 greg 2.38 double ldiff;
82 greg 2.16 double dtmp, d2;
83     FVECT vtmp;
84 greg 1.3 COLOR ctmp;
85    
86     setcolor(cval, 0.0, 0.0, 0.0);
87    
88     ldot = DOT(np->pnorm, ldir);
89    
90     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
91     return; /* wrong side */
92    
93 greg 2.38 /* Fresnel estimate */
94     ldiff = np->rdiff;
95 schorsch 2.45 if (np->specfl & SP_PURE && (np->rspec > FTINY) & (ldiff > FTINY))
96 greg 2.38 ldiff *= 1. - FRESNE(fabs(ldot));
97    
98     if (ldot > FTINY && ldiff > FTINY) {
99 greg 1.3 /*
100 greg 1.4 * Compute and add diffuse reflected component to returned
101     * color. The diffuse reflected component will always be
102     * modified by the color of the material.
103 greg 1.3 */
104     copycolor(ctmp, np->mcolor);
105 greg 2.38 dtmp = ldot * omega * ldiff / PI;
106 greg 1.3 scalecolor(ctmp, dtmp);
107     addcolor(cval, ctmp);
108     }
109 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
110 greg 1.3 /*
111     * Compute specular reflection coefficient using
112     * gaussian distribution model.
113     */
114 greg 2.3 /* roughness */
115 greg 2.16 dtmp = np->alpha2;
116 greg 2.3 /* + source if flat */
117     if (np->specfl & SP_FLAT)
118 greg 2.16 dtmp += omega/(4.0*PI);
119 greg 2.23 /* half vector */
120 greg 2.18 vtmp[0] = ldir[0] - np->rp->rdir[0];
121     vtmp[1] = ldir[1] - np->rp->rdir[1];
122     vtmp[2] = ldir[2] - np->rp->rdir[2];
123 greg 2.16 d2 = DOT(vtmp, np->pnorm);
124 greg 2.23 d2 *= d2;
125     d2 = (DOT(vtmp,vtmp) - d2) / d2;
126 greg 1.3 /* gaussian */
127 greg 2.16 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
128 greg 1.3 /* worth using? */
129     if (dtmp > FTINY) {
130     copycolor(ctmp, np->scolor);
131 greg 2.14 dtmp *= omega * sqrt(ldot/np->pdot);
132 greg 1.3 scalecolor(ctmp, dtmp);
133     addcolor(cval, ctmp);
134     }
135     }
136     if (ldot < -FTINY && np->tdiff > FTINY) {
137     /*
138     * Compute diffuse transmission.
139     */
140     copycolor(ctmp, np->mcolor);
141     dtmp = -ldot * omega * np->tdiff / PI;
142     scalecolor(ctmp, dtmp);
143     addcolor(cval, ctmp);
144     }
145 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
146 greg 1.3 /*
147 greg 1.4 * Compute specular transmission. Specular transmission
148 greg 1.13 * is always modified by material color.
149 greg 1.3 */
150     /* roughness + source */
151 greg 2.19 dtmp = np->alpha2 + omega/PI;
152 greg 1.3 /* gaussian */
153 greg 2.21 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
154 greg 1.3 /* worth using? */
155     if (dtmp > FTINY) {
156 greg 1.13 copycolor(ctmp, np->mcolor);
157 greg 2.18 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
158 greg 1.13 scalecolor(ctmp, dtmp);
159 greg 1.3 addcolor(cval, ctmp);
160     }
161     }
162     }
163    
164    
165 schorsch 2.47 extern int
166     m_normal( /* color a ray that hit something normal */
167     register OBJREC *m,
168     register RAY *r
169     )
170 greg 1.3 {
171     NORMDAT nd;
172 greg 2.38 double fest;
173 greg 1.9 double transtest, transdist;
174 greg 2.29 double mirtest, mirdist;
175     int hastexture;
176     double d;
177 greg 1.1 COLOR ctmp;
178     register int i;
179     /* easy shadow test */
180     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
181 greg 2.27 return(1);
182 greg 2.2
183     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
184     objerror(m, USER, "bad number of arguments");
185 greg 2.29 /* check for back side */
186     if (r->rod < 0.0) {
187     if (!backvis && m->otype != MAT_TRANS) {
188     raytrans(r);
189     return(1);
190     }
191 greg 2.40 raytexture(r, m->omod);
192 greg 2.29 flipsurface(r); /* reorient if backvis */
193 greg 2.40 } else
194     raytexture(r, m->omod);
195 greg 1.3 nd.mp = m;
196 greg 2.16 nd.rp = r;
197 greg 1.1 /* get material color */
198 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
199 greg 1.1 m->oargs.farg[1],
200     m->oargs.farg[2]);
201     /* get roughness */
202 greg 2.2 nd.specfl = 0;
203 greg 1.3 nd.alpha2 = m->oargs.farg[4];
204 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
205     nd.specfl |= SP_PURE;
206 greg 2.40
207 schorsch 2.45 if ( (hastexture = (DOT(r->pert,r->pert) > FTINY*FTINY)) ) {
208 greg 2.29 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
209 greg 2.41 } else {
210 greg 2.29 VCOPY(nd.pnorm, r->ron);
211     nd.pdot = r->rod;
212     }
213 greg 2.42 if (r->ro != NULL && isflat(r->ro->otype))
214     nd.specfl |= SP_FLAT;
215 greg 1.13 if (nd.pdot < .001)
216     nd.pdot = .001; /* non-zero for dirnorm() */
217 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
218 greg 2.29 mirtest = transtest = 0;
219     mirdist = transdist = r->rot;
220 greg 2.30 nd.rspec = m->oargs.farg[3];
221 greg 2.38 /* compute Fresnel approx. */
222     if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
223     fest = FRESNE(r->rod);
224     nd.rspec += fest*(1. - nd.rspec);
225     } else
226     fest = 0.;
227 greg 1.3 /* compute transmission */
228 greg 1.1 if (m->otype == MAT_TRANS) {
229 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
230     nd.tspec = nd.trans * m->oargs.farg[6];
231     nd.tdiff = nd.trans - nd.tspec;
232 greg 2.2 if (nd.tspec > FTINY) {
233     nd.specfl |= SP_TRAN;
234 greg 2.5 /* check threshold */
235 greg 2.25 if (!(nd.specfl & SP_PURE) &&
236     specthresh >= nd.tspec-FTINY)
237 greg 2.5 nd.specfl |= SP_TBLT;
238 greg 2.29 if (!hastexture || r->crtype & SHADOW) {
239 greg 2.2 VCOPY(nd.prdir, r->rdir);
240     transtest = 2;
241     } else {
242     for (i = 0; i < 3; i++) /* perturb */
243 greg 2.19 nd.prdir[i] = r->rdir[i] - r->pert[i];
244 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
245     normalize(nd.prdir); /* OK */
246     else
247     VCOPY(nd.prdir, r->rdir);
248 greg 2.2 }
249 greg 1.14 }
250 greg 1.1 } else
251 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
252 greg 1.1 /* transmitted ray */
253 gregl 2.36 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
254 greg 1.3 RAY lr;
255     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
256 greg 1.14 VCOPY(lr.rdir, nd.prdir);
257 greg 1.1 rayvalue(&lr);
258 greg 1.3 scalecolor(lr.rcol, nd.tspec);
259 greg 1.8 multcolor(lr.rcol, nd.mcolor); /* modified by color */
260 greg 1.1 addcolor(r->rcol, lr.rcol);
261 greg 1.9 transtest *= bright(lr.rcol);
262     transdist = r->rot + lr.rt;
263 greg 1.1 }
264 greg 2.11 } else
265     transtest = 0;
266 greg 2.2
267 greg 2.29 if (r->crtype & SHADOW) { /* the rest is shadow */
268     r->rt = transdist;
269 greg 2.27 return(1);
270 greg 2.30 }
271     /* get specular reflection */
272     if (nd.rspec > FTINY) {
273     nd.specfl |= SP_REFL;
274     /* compute specular color */
275 greg 2.38 if (m->otype != MAT_METAL) {
276     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
277     } else if (fest > FTINY) {
278     d = nd.rspec*(1. - fest);
279     for (i = 0; i < 3; i++)
280     nd.scolor[i] = fest + nd.mcolor[i]*d;
281     } else {
282 greg 2.30 copycolor(nd.scolor, nd.mcolor);
283 greg 2.38 scalecolor(nd.scolor, nd.rspec);
284     }
285 greg 2.30 /* check threshold */
286     if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
287     nd.specfl |= SP_RBLT;
288     /* compute reflected ray */
289     for (i = 0; i < 3; i++)
290     nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
291     /* penetration? */
292     if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
293     for (i = 0; i < 3; i++) /* safety measure */
294     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
295 gregl 2.36 }
296     /* reflected ray */
297     if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
298     RAY lr;
299     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
300     VCOPY(lr.rdir, nd.vrefl);
301     rayvalue(&lr);
302     multcolor(lr.rcol, nd.scolor);
303     addcolor(r->rcol, lr.rcol);
304     if (!hastexture && nd.specfl & SP_FLAT) {
305     mirtest = 2.*bright(lr.rcol);
306     mirdist = r->rot + lr.rt;
307 greg 2.30 }
308     }
309 greg 2.29 }
310 greg 1.1 /* diffuse reflection */
311 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
312 greg 1.1
313 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
314 greg 2.27 return(1); /* 100% pure specular */
315 greg 2.3
316 gregl 2.36 if (!(nd.specfl & SP_PURE))
317     gaussamp(r, &nd); /* checks *BLT flags */
318 greg 2.2
319 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
320 greg 2.31 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
321 greg 2.5 if (nd.specfl & SP_RBLT)
322     scalecolor(ctmp, 1.0-nd.trans);
323     else
324     scalecolor(ctmp, nd.rdiff);
325 greg 1.3 multcolor(ctmp, nd.mcolor); /* modified by material color */
326 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
327     }
328 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
329 greg 1.1 flipsurface(r);
330 greg 2.32 if (hastexture) {
331     FVECT bnorm;
332     bnorm[0] = -nd.pnorm[0];
333     bnorm[1] = -nd.pnorm[1];
334     bnorm[2] = -nd.pnorm[2];
335     ambient(ctmp, r, bnorm);
336     } else
337     ambient(ctmp, r, r->ron);
338 greg 2.5 if (nd.specfl & SP_TBLT)
339     scalecolor(ctmp, nd.trans);
340     else
341     scalecolor(ctmp, nd.tdiff);
342 greg 1.13 multcolor(ctmp, nd.mcolor); /* modified by color */
343 greg 1.1 addcolor(r->rcol, ctmp);
344     flipsurface(r);
345     }
346 greg 1.3 /* add direct component */
347     direct(r, dirnorm, &nd);
348 greg 1.9 /* check distance */
349 greg 2.29 d = bright(r->rcol);
350     if (transtest > d)
351 greg 1.9 r->rt = transdist;
352 greg 2.29 else if (mirtest > d)
353     r->rt = mirdist;
354 greg 2.27
355     return(1);
356 greg 2.2 }
357    
358    
359 greg 2.38 static void
360 schorsch 2.47 gaussamp( /* sample gaussian specular */
361     RAY *r,
362     register NORMDAT *np
363     )
364 greg 2.2 {
365     RAY sr;
366     FVECT u, v, h;
367     double rv[2];
368     double d, sinp, cosp;
369 greg 2.34 int niter;
370 greg 2.2 register int i;
371 greg 2.13 /* quick test */
372     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
373     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
374     return;
375 greg 2.2 /* set up sample coordinates */
376     v[0] = v[1] = v[2] = 0.0;
377     for (i = 0; i < 3; i++)
378     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
379     break;
380     v[i] = 1.0;
381     fcross(u, v, np->pnorm);
382     normalize(u);
383     fcross(v, np->pnorm, u);
384     /* compute reflection */
385 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
386 greg 2.2 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
387     dimlist[ndims++] = (int)np->mp;
388 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
389     if (niter)
390     d = frandom();
391     else
392     d = urand(ilhash(dimlist,ndims)+samplendx);
393     multisamp(rv, 2, d);
394     d = 2.0*PI * rv[0];
395 gwlarson 2.37 cosp = tcos(d);
396     sinp = tsin(d);
397 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
398     if (rv[1] <= FTINY)
399     d = 1.0;
400     else
401     d = sqrt( np->alpha2 * -log(rv[1]) );
402     for (i = 0; i < 3; i++)
403     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
404     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
405     for (i = 0; i < 3; i++)
406     sr.rdir[i] = r->rdir[i] + d*h[i];
407     if (DOT(sr.rdir, r->ron) > FTINY) {
408     rayvalue(&sr);
409     multcolor(sr.rcol, np->scolor);
410     addcolor(r->rcol, sr.rcol);
411     break;
412     }
413     }
414 greg 2.2 ndims--;
415     }
416     /* compute transmission */
417 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
418     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
419     dimlist[ndims++] = (int)np->mp;
420 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
421     if (niter)
422     d = frandom();
423     else
424     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
425     multisamp(rv, 2, d);
426     d = 2.0*PI * rv[0];
427 gwlarson 2.37 cosp = tcos(d);
428     sinp = tsin(d);
429 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
430     if (rv[1] <= FTINY)
431     d = 1.0;
432     else
433 gwlarson 2.37 d = sqrt( np->alpha2 * -log(rv[1]) );
434 greg 2.34 for (i = 0; i < 3; i++)
435     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
436     if (DOT(sr.rdir, r->ron) < -FTINY) {
437     normalize(sr.rdir); /* OK, normalize */
438     rayvalue(&sr);
439     scalecolor(sr.rcol, np->tspec);
440     multcolor(sr.rcol, np->mcolor); /* modified */
441     addcolor(r->rcol, sr.rcol);
442     break;
443     }
444     }
445 greg 2.8 ndims--;
446     }
447 greg 1.1 }