ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.38
Committed: Sat Feb 22 02:07:29 2003 UTC (21 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.37: +88 -17 lines
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.38 static const char RCSid[] = "$Id$";
3 greg 1.1 #endif
4     /*
5     * normal.c - shading function for normal materials.
6     *
7     * 8/19/85
8     * 12/19/85 - added stuff for metals.
9     * 6/26/87 - improved specular model.
10     * 9/28/87 - added model for translucent materials.
11 greg 2.2 * Later changes described in delta comments.
12 greg 1.1 */
13    
14 greg 2.38 /* ====================================================================
15     * The Radiance Software License, Version 1.0
16     *
17     * Copyright (c) 1990 - 2002 The Regents of the University of California,
18     * through Lawrence Berkeley National Laboratory. All rights reserved.
19     *
20     * Redistribution and use in source and binary forms, with or without
21     * modification, are permitted provided that the following conditions
22     * are met:
23     *
24     * 1. Redistributions of source code must retain the above copyright
25     * notice, this list of conditions and the following disclaimer.
26     *
27     * 2. Redistributions in binary form must reproduce the above copyright
28     * notice, this list of conditions and the following disclaimer in
29     * the documentation and/or other materials provided with the
30     * distribution.
31     *
32     * 3. The end-user documentation included with the redistribution,
33     * if any, must include the following acknowledgment:
34     * "This product includes Radiance software
35     * (http://radsite.lbl.gov/)
36     * developed by the Lawrence Berkeley National Laboratory
37     * (http://www.lbl.gov/)."
38     * Alternately, this acknowledgment may appear in the software itself,
39     * if and wherever such third-party acknowledgments normally appear.
40     *
41     * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
42     * and "The Regents of the University of California" must
43     * not be used to endorse or promote products derived from this
44     * software without prior written permission. For written
45     * permission, please contact [email protected].
46     *
47     * 5. Products derived from this software may not be called "Radiance",
48     * nor may "Radiance" appear in their name, without prior written
49     * permission of Lawrence Berkeley National Laboratory.
50     *
51     * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
52     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
53     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54     * DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
55     * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
58     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
59     * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
60     * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
61     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62     * SUCH DAMAGE.
63     * ====================================================================
64     *
65     * This software consists of voluntary contributions made by many
66     * individuals on behalf of Lawrence Berkeley National Laboratory. For more
67     * information on Lawrence Berkeley National Laboratory, please see
68     * <http://www.lbl.gov/>.
69     */
70    
71 greg 1.1 #include "ray.h"
72    
73     #include "otypes.h"
74    
75 greg 2.2 #include "random.h"
76    
77 greg 2.34 #ifndef MAXITER
78     #define MAXITER 10 /* maximum # specular ray attempts */
79     #endif
80 greg 2.38 /* estimate of Fresnel function */
81     #define FRESNE(ci) (exp(-6.0*(ci)) - 0.00247875217)
82 greg 2.34
83 greg 2.38 static void gaussamp();
84 greg 2.24
85 greg 1.1 /*
86 greg 2.22 * This routine implements the isotropic Gaussian
87     * model described by Ward in Siggraph `92 article.
88 greg 1.1 * We orient the surface towards the incoming ray, so a single
89     * surface can be used to represent an infinitely thin object.
90     *
91     * Arguments for MAT_PLASTIC and MAT_METAL are:
92     * red grn blu specular-frac. facet-slope
93     *
94     * Arguments for MAT_TRANS are:
95     * red grn blu rspec rough trans tspec
96     */
97    
98 greg 2.2 /* specularity flags */
99     #define SP_REFL 01 /* has reflected specular component */
100     #define SP_TRAN 02 /* has transmitted specular */
101 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
102     #define SP_FLAT 010 /* flat reflecting surface */
103     #define SP_RBLT 020 /* reflection below sample threshold */
104     #define SP_TBLT 040 /* transmission below threshold */
105 greg 1.1
106 greg 1.3 typedef struct {
107     OBJREC *mp; /* material pointer */
108 greg 2.16 RAY *rp; /* ray pointer */
109 greg 2.2 short specfl; /* specularity flags, defined above */
110 greg 1.1 COLOR mcolor; /* color of this material */
111     COLOR scolor; /* color of specular component */
112     FVECT vrefl; /* vector in direction of reflected ray */
113 greg 1.14 FVECT prdir; /* vector in transmitted direction */
114 greg 2.2 double alpha2; /* roughness squared */
115 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
116     double trans; /* transmissivity */
117     double tdiff, tspec; /* transmitted specular, diffuse */
118     FVECT pnorm; /* perturbed surface normal */
119     double pdot; /* perturbed dot product */
120 greg 1.3 } NORMDAT; /* normal material data */
121    
122    
123 greg 2.38 static void
124 greg 1.3 dirnorm(cval, np, ldir, omega) /* compute source contribution */
125     COLOR cval; /* returned coefficient */
126     register NORMDAT *np; /* material data */
127     FVECT ldir; /* light source direction */
128     double omega; /* light source size */
129     {
130 greg 1.1 double ldot;
131 greg 2.38 double ldiff;
132 greg 2.16 double dtmp, d2;
133     FVECT vtmp;
134 greg 1.3 COLOR ctmp;
135    
136     setcolor(cval, 0.0, 0.0, 0.0);
137    
138     ldot = DOT(np->pnorm, ldir);
139    
140     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
141     return; /* wrong side */
142    
143 greg 2.38 /* Fresnel estimate */
144     ldiff = np->rdiff;
145     if (np->specfl & SP_PURE && (np->rspec > FTINY & ldiff > FTINY))
146     ldiff *= 1. - FRESNE(fabs(ldot));
147    
148     if (ldot > FTINY && ldiff > FTINY) {
149 greg 1.3 /*
150 greg 1.4 * Compute and add diffuse reflected component to returned
151     * color. The diffuse reflected component will always be
152     * modified by the color of the material.
153 greg 1.3 */
154     copycolor(ctmp, np->mcolor);
155 greg 2.38 dtmp = ldot * omega * ldiff / PI;
156 greg 1.3 scalecolor(ctmp, dtmp);
157     addcolor(cval, ctmp);
158     }
159 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
160 greg 1.3 /*
161     * Compute specular reflection coefficient using
162     * gaussian distribution model.
163     */
164 greg 2.3 /* roughness */
165 greg 2.16 dtmp = np->alpha2;
166 greg 2.3 /* + source if flat */
167     if (np->specfl & SP_FLAT)
168 greg 2.16 dtmp += omega/(4.0*PI);
169 greg 2.23 /* half vector */
170 greg 2.18 vtmp[0] = ldir[0] - np->rp->rdir[0];
171     vtmp[1] = ldir[1] - np->rp->rdir[1];
172     vtmp[2] = ldir[2] - np->rp->rdir[2];
173 greg 2.16 d2 = DOT(vtmp, np->pnorm);
174 greg 2.23 d2 *= d2;
175     d2 = (DOT(vtmp,vtmp) - d2) / d2;
176 greg 1.3 /* gaussian */
177 greg 2.16 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
178 greg 1.3 /* worth using? */
179     if (dtmp > FTINY) {
180     copycolor(ctmp, np->scolor);
181 greg 2.14 dtmp *= omega * sqrt(ldot/np->pdot);
182 greg 1.3 scalecolor(ctmp, dtmp);
183     addcolor(cval, ctmp);
184     }
185     }
186     if (ldot < -FTINY && np->tdiff > FTINY) {
187     /*
188     * Compute diffuse transmission.
189     */
190     copycolor(ctmp, np->mcolor);
191     dtmp = -ldot * omega * np->tdiff / PI;
192     scalecolor(ctmp, dtmp);
193     addcolor(cval, ctmp);
194     }
195 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
196 greg 1.3 /*
197 greg 1.4 * Compute specular transmission. Specular transmission
198 greg 1.13 * is always modified by material color.
199 greg 1.3 */
200     /* roughness + source */
201 greg 2.19 dtmp = np->alpha2 + omega/PI;
202 greg 1.3 /* gaussian */
203 greg 2.21 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
204 greg 1.3 /* worth using? */
205     if (dtmp > FTINY) {
206 greg 1.13 copycolor(ctmp, np->mcolor);
207 greg 2.18 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
208 greg 1.13 scalecolor(ctmp, dtmp);
209 greg 1.3 addcolor(cval, ctmp);
210     }
211     }
212     }
213    
214    
215 greg 2.38 int
216 greg 2.2 m_normal(m, r) /* color a ray that hit something normal */
217 greg 1.3 register OBJREC *m;
218     register RAY *r;
219     {
220     NORMDAT nd;
221 greg 2.38 double fest;
222 greg 1.9 double transtest, transdist;
223 greg 2.29 double mirtest, mirdist;
224     int hastexture;
225     double d;
226 greg 1.1 COLOR ctmp;
227     register int i;
228     /* easy shadow test */
229     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
230 greg 2.27 return(1);
231 greg 2.2
232     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
233     objerror(m, USER, "bad number of arguments");
234 greg 2.29 /* check for back side */
235     if (r->rod < 0.0) {
236     if (!backvis && m->otype != MAT_TRANS) {
237     raytrans(r);
238     return(1);
239     }
240     flipsurface(r); /* reorient if backvis */
241     }
242 greg 1.3 nd.mp = m;
243 greg 2.16 nd.rp = r;
244 greg 1.1 /* get material color */
245 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
246 greg 1.1 m->oargs.farg[1],
247     m->oargs.farg[2]);
248     /* get roughness */
249 greg 2.2 nd.specfl = 0;
250 greg 1.3 nd.alpha2 = m->oargs.farg[4];
251 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
252     nd.specfl |= SP_PURE;
253 greg 2.29 if (r->ro != NULL && isflat(r->ro->otype))
254     nd.specfl |= SP_FLAT;
255 greg 1.1 /* get modifiers */
256     raytexture(r, m->omod);
257 greg 2.29 if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY)
258     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
259     else {
260     VCOPY(nd.pnorm, r->ron);
261     nd.pdot = r->rod;
262     }
263 greg 1.13 if (nd.pdot < .001)
264     nd.pdot = .001; /* non-zero for dirnorm() */
265 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
266 greg 2.29 mirtest = transtest = 0;
267     mirdist = transdist = r->rot;
268 greg 2.30 nd.rspec = m->oargs.farg[3];
269 greg 2.38 /* compute Fresnel approx. */
270     if (nd.specfl & SP_PURE && nd.rspec > FTINY) {
271     fest = FRESNE(r->rod);
272     nd.rspec += fest*(1. - nd.rspec);
273     } else
274     fest = 0.;
275 greg 1.3 /* compute transmission */
276 greg 1.1 if (m->otype == MAT_TRANS) {
277 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
278     nd.tspec = nd.trans * m->oargs.farg[6];
279     nd.tdiff = nd.trans - nd.tspec;
280 greg 2.2 if (nd.tspec > FTINY) {
281     nd.specfl |= SP_TRAN;
282 greg 2.5 /* check threshold */
283 greg 2.25 if (!(nd.specfl & SP_PURE) &&
284     specthresh >= nd.tspec-FTINY)
285 greg 2.5 nd.specfl |= SP_TBLT;
286 greg 2.29 if (!hastexture || r->crtype & SHADOW) {
287 greg 2.2 VCOPY(nd.prdir, r->rdir);
288     transtest = 2;
289     } else {
290     for (i = 0; i < 3; i++) /* perturb */
291 greg 2.19 nd.prdir[i] = r->rdir[i] - r->pert[i];
292 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
293     normalize(nd.prdir); /* OK */
294     else
295     VCOPY(nd.prdir, r->rdir);
296 greg 2.2 }
297 greg 1.14 }
298 greg 1.1 } else
299 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
300 greg 1.1 /* transmitted ray */
301 gregl 2.36 if ((nd.specfl&(SP_TRAN|SP_PURE|SP_TBLT)) == (SP_TRAN|SP_PURE)) {
302 greg 1.3 RAY lr;
303     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
304 greg 1.14 VCOPY(lr.rdir, nd.prdir);
305 greg 1.1 rayvalue(&lr);
306 greg 1.3 scalecolor(lr.rcol, nd.tspec);
307 greg 1.8 multcolor(lr.rcol, nd.mcolor); /* modified by color */
308 greg 1.1 addcolor(r->rcol, lr.rcol);
309 greg 1.9 transtest *= bright(lr.rcol);
310     transdist = r->rot + lr.rt;
311 greg 1.1 }
312 greg 2.11 } else
313     transtest = 0;
314 greg 2.2
315 greg 2.29 if (r->crtype & SHADOW) { /* the rest is shadow */
316     r->rt = transdist;
317 greg 2.27 return(1);
318 greg 2.30 }
319     /* get specular reflection */
320     if (nd.rspec > FTINY) {
321     nd.specfl |= SP_REFL;
322     /* compute specular color */
323 greg 2.38 if (m->otype != MAT_METAL) {
324     setcolor(nd.scolor, nd.rspec, nd.rspec, nd.rspec);
325     } else if (fest > FTINY) {
326     d = nd.rspec*(1. - fest);
327     for (i = 0; i < 3; i++)
328     nd.scolor[i] = fest + nd.mcolor[i]*d;
329     } else {
330 greg 2.30 copycolor(nd.scolor, nd.mcolor);
331 greg 2.38 scalecolor(nd.scolor, nd.rspec);
332     }
333 greg 2.30 /* check threshold */
334     if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
335     nd.specfl |= SP_RBLT;
336     /* compute reflected ray */
337     for (i = 0; i < 3; i++)
338     nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
339     /* penetration? */
340     if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
341     for (i = 0; i < 3; i++) /* safety measure */
342     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
343 gregl 2.36 }
344     /* reflected ray */
345     if ((nd.specfl&(SP_REFL|SP_PURE|SP_RBLT)) == (SP_REFL|SP_PURE)) {
346     RAY lr;
347     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
348     VCOPY(lr.rdir, nd.vrefl);
349     rayvalue(&lr);
350     multcolor(lr.rcol, nd.scolor);
351     addcolor(r->rcol, lr.rcol);
352     if (!hastexture && nd.specfl & SP_FLAT) {
353     mirtest = 2.*bright(lr.rcol);
354     mirdist = r->rot + lr.rt;
355 greg 2.30 }
356     }
357 greg 2.29 }
358 greg 1.1 /* diffuse reflection */
359 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
360 greg 1.1
361 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
362 greg 2.27 return(1); /* 100% pure specular */
363 greg 2.3
364 gregl 2.36 if (!(nd.specfl & SP_PURE))
365     gaussamp(r, &nd); /* checks *BLT flags */
366 greg 2.2
367 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
368 greg 2.31 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
369 greg 2.5 if (nd.specfl & SP_RBLT)
370     scalecolor(ctmp, 1.0-nd.trans);
371     else
372     scalecolor(ctmp, nd.rdiff);
373 greg 1.3 multcolor(ctmp, nd.mcolor); /* modified by material color */
374 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
375     }
376 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
377 greg 1.1 flipsurface(r);
378 greg 2.32 if (hastexture) {
379     FVECT bnorm;
380     bnorm[0] = -nd.pnorm[0];
381     bnorm[1] = -nd.pnorm[1];
382     bnorm[2] = -nd.pnorm[2];
383     ambient(ctmp, r, bnorm);
384     } else
385     ambient(ctmp, r, r->ron);
386 greg 2.5 if (nd.specfl & SP_TBLT)
387     scalecolor(ctmp, nd.trans);
388     else
389     scalecolor(ctmp, nd.tdiff);
390 greg 1.13 multcolor(ctmp, nd.mcolor); /* modified by color */
391 greg 1.1 addcolor(r->rcol, ctmp);
392     flipsurface(r);
393     }
394 greg 1.3 /* add direct component */
395     direct(r, dirnorm, &nd);
396 greg 1.9 /* check distance */
397 greg 2.29 d = bright(r->rcol);
398     if (transtest > d)
399 greg 1.9 r->rt = transdist;
400 greg 2.29 else if (mirtest > d)
401     r->rt = mirdist;
402 greg 2.27
403     return(1);
404 greg 2.2 }
405    
406    
407 greg 2.38 static void
408 greg 2.2 gaussamp(r, np) /* sample gaussian specular */
409     RAY *r;
410     register NORMDAT *np;
411     {
412     RAY sr;
413     FVECT u, v, h;
414     double rv[2];
415     double d, sinp, cosp;
416 greg 2.34 int niter;
417 greg 2.2 register int i;
418 greg 2.13 /* quick test */
419     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
420     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
421     return;
422 greg 2.2 /* set up sample coordinates */
423     v[0] = v[1] = v[2] = 0.0;
424     for (i = 0; i < 3; i++)
425     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
426     break;
427     v[i] = 1.0;
428     fcross(u, v, np->pnorm);
429     normalize(u);
430     fcross(v, np->pnorm, u);
431     /* compute reflection */
432 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
433 greg 2.2 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
434     dimlist[ndims++] = (int)np->mp;
435 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
436     if (niter)
437     d = frandom();
438     else
439     d = urand(ilhash(dimlist,ndims)+samplendx);
440     multisamp(rv, 2, d);
441     d = 2.0*PI * rv[0];
442 gwlarson 2.37 cosp = tcos(d);
443     sinp = tsin(d);
444 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
445     if (rv[1] <= FTINY)
446     d = 1.0;
447     else
448     d = sqrt( np->alpha2 * -log(rv[1]) );
449     for (i = 0; i < 3; i++)
450     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
451     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
452     for (i = 0; i < 3; i++)
453     sr.rdir[i] = r->rdir[i] + d*h[i];
454     if (DOT(sr.rdir, r->ron) > FTINY) {
455     rayvalue(&sr);
456     multcolor(sr.rcol, np->scolor);
457     addcolor(r->rcol, sr.rcol);
458     break;
459     }
460     }
461 greg 2.2 ndims--;
462     }
463     /* compute transmission */
464 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
465     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
466     dimlist[ndims++] = (int)np->mp;
467 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
468     if (niter)
469     d = frandom();
470     else
471     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
472     multisamp(rv, 2, d);
473     d = 2.0*PI * rv[0];
474 gwlarson 2.37 cosp = tcos(d);
475     sinp = tsin(d);
476 greg 2.34 rv[1] = 1.0 - specjitter*rv[1];
477     if (rv[1] <= FTINY)
478     d = 1.0;
479     else
480 gwlarson 2.37 d = sqrt( np->alpha2 * -log(rv[1]) );
481 greg 2.34 for (i = 0; i < 3; i++)
482     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
483     if (DOT(sr.rdir, r->ron) < -FTINY) {
484     normalize(sr.rdir); /* OK, normalize */
485     rayvalue(&sr);
486     scalecolor(sr.rcol, np->tspec);
487     multcolor(sr.rcol, np->mcolor); /* modified */
488     addcolor(r->rcol, sr.rcol);
489     break;
490     }
491     }
492 greg 2.8 ndims--;
493     }
494 greg 1.1 }