ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.35
Committed: Tue Jan 7 16:44:04 1997 UTC (27 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.34: +1 -1 lines
Log Message:
fixed double-counting bug in calculation of specular transmission

File Contents

# User Rev Content
1 greg 2.34 /* Copyright (c) 1996 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * normal.c - shading function for normal materials.
9     *
10     * 8/19/85
11     * 12/19/85 - added stuff for metals.
12     * 6/26/87 - improved specular model.
13     * 9/28/87 - added model for translucent materials.
14 greg 2.2 * Later changes described in delta comments.
15 greg 1.1 */
16    
17     #include "ray.h"
18    
19     #include "otypes.h"
20    
21 greg 2.2 #include "random.h"
22    
23 greg 2.5 extern double specthresh; /* specular sampling threshold */
24     extern double specjitter; /* specular sampling jitter */
25    
26 greg 2.28 extern int backvis; /* back faces visible? */
27    
28 greg 2.34 #ifndef MAXITER
29     #define MAXITER 10 /* maximum # specular ray attempts */
30     #endif
31    
32 greg 2.24 static gaussamp();
33    
34 greg 1.1 /*
35 greg 2.22 * This routine implements the isotropic Gaussian
36     * model described by Ward in Siggraph `92 article.
37 greg 1.1 * We orient the surface towards the incoming ray, so a single
38     * surface can be used to represent an infinitely thin object.
39     *
40     * Arguments for MAT_PLASTIC and MAT_METAL are:
41     * red grn blu specular-frac. facet-slope
42     *
43     * Arguments for MAT_TRANS are:
44     * red grn blu rspec rough trans tspec
45     */
46    
47 greg 2.2 /* specularity flags */
48     #define SP_REFL 01 /* has reflected specular component */
49     #define SP_TRAN 02 /* has transmitted specular */
50 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
51     #define SP_FLAT 010 /* flat reflecting surface */
52     #define SP_RBLT 020 /* reflection below sample threshold */
53     #define SP_TBLT 040 /* transmission below threshold */
54 greg 1.1
55 greg 1.3 typedef struct {
56     OBJREC *mp; /* material pointer */
57 greg 2.16 RAY *rp; /* ray pointer */
58 greg 2.2 short specfl; /* specularity flags, defined above */
59 greg 1.1 COLOR mcolor; /* color of this material */
60     COLOR scolor; /* color of specular component */
61     FVECT vrefl; /* vector in direction of reflected ray */
62 greg 1.14 FVECT prdir; /* vector in transmitted direction */
63 greg 2.2 double alpha2; /* roughness squared */
64 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
65     double trans; /* transmissivity */
66     double tdiff, tspec; /* transmitted specular, diffuse */
67     FVECT pnorm; /* perturbed surface normal */
68     double pdot; /* perturbed dot product */
69 greg 1.3 } NORMDAT; /* normal material data */
70    
71    
72     dirnorm(cval, np, ldir, omega) /* compute source contribution */
73     COLOR cval; /* returned coefficient */
74     register NORMDAT *np; /* material data */
75     FVECT ldir; /* light source direction */
76     double omega; /* light source size */
77     {
78 greg 1.1 double ldot;
79 greg 2.16 double dtmp, d2;
80     FVECT vtmp;
81 greg 1.3 COLOR ctmp;
82    
83     setcolor(cval, 0.0, 0.0, 0.0);
84    
85     ldot = DOT(np->pnorm, ldir);
86    
87     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
88     return; /* wrong side */
89    
90     if (ldot > FTINY && np->rdiff > FTINY) {
91     /*
92 greg 1.4 * Compute and add diffuse reflected component to returned
93     * color. The diffuse reflected component will always be
94     * modified by the color of the material.
95 greg 1.3 */
96     copycolor(ctmp, np->mcolor);
97     dtmp = ldot * omega * np->rdiff / PI;
98     scalecolor(ctmp, dtmp);
99     addcolor(cval, ctmp);
100     }
101 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
102 greg 1.3 /*
103     * Compute specular reflection coefficient using
104     * gaussian distribution model.
105     */
106 greg 2.3 /* roughness */
107 greg 2.16 dtmp = np->alpha2;
108 greg 2.3 /* + source if flat */
109     if (np->specfl & SP_FLAT)
110 greg 2.16 dtmp += omega/(4.0*PI);
111 greg 2.23 /* half vector */
112 greg 2.18 vtmp[0] = ldir[0] - np->rp->rdir[0];
113     vtmp[1] = ldir[1] - np->rp->rdir[1];
114     vtmp[2] = ldir[2] - np->rp->rdir[2];
115 greg 2.16 d2 = DOT(vtmp, np->pnorm);
116 greg 2.23 d2 *= d2;
117     d2 = (DOT(vtmp,vtmp) - d2) / d2;
118 greg 1.3 /* gaussian */
119 greg 2.16 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
120 greg 1.3 /* worth using? */
121     if (dtmp > FTINY) {
122     copycolor(ctmp, np->scolor);
123 greg 2.14 dtmp *= omega * sqrt(ldot/np->pdot);
124 greg 1.3 scalecolor(ctmp, dtmp);
125     addcolor(cval, ctmp);
126     }
127     }
128     if (ldot < -FTINY && np->tdiff > FTINY) {
129     /*
130     * Compute diffuse transmission.
131     */
132     copycolor(ctmp, np->mcolor);
133     dtmp = -ldot * omega * np->tdiff / PI;
134     scalecolor(ctmp, dtmp);
135     addcolor(cval, ctmp);
136     }
137 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
138 greg 1.3 /*
139 greg 1.4 * Compute specular transmission. Specular transmission
140 greg 1.13 * is always modified by material color.
141 greg 1.3 */
142     /* roughness + source */
143 greg 2.19 dtmp = np->alpha2 + omega/PI;
144 greg 1.3 /* gaussian */
145 greg 2.21 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
146 greg 1.3 /* worth using? */
147     if (dtmp > FTINY) {
148 greg 1.13 copycolor(ctmp, np->mcolor);
149 greg 2.18 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
150 greg 1.13 scalecolor(ctmp, dtmp);
151 greg 1.3 addcolor(cval, ctmp);
152     }
153     }
154     }
155    
156    
157 greg 2.2 m_normal(m, r) /* color a ray that hit something normal */
158 greg 1.3 register OBJREC *m;
159     register RAY *r;
160     {
161     NORMDAT nd;
162 greg 1.9 double transtest, transdist;
163 greg 2.29 double mirtest, mirdist;
164     int hastexture;
165     double d;
166 greg 1.1 COLOR ctmp;
167     register int i;
168     /* easy shadow test */
169     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
170 greg 2.27 return(1);
171 greg 2.2
172     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
173     objerror(m, USER, "bad number of arguments");
174 greg 2.29 /* check for back side */
175     if (r->rod < 0.0) {
176     if (!backvis && m->otype != MAT_TRANS) {
177     raytrans(r);
178     return(1);
179     }
180     flipsurface(r); /* reorient if backvis */
181     }
182 greg 1.3 nd.mp = m;
183 greg 2.16 nd.rp = r;
184 greg 1.1 /* get material color */
185 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
186 greg 1.1 m->oargs.farg[1],
187     m->oargs.farg[2]);
188     /* get roughness */
189 greg 2.2 nd.specfl = 0;
190 greg 1.3 nd.alpha2 = m->oargs.farg[4];
191 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
192     nd.specfl |= SP_PURE;
193 greg 2.29 if (r->ro != NULL && isflat(r->ro->otype))
194     nd.specfl |= SP_FLAT;
195 greg 1.1 /* get modifiers */
196     raytexture(r, m->omod);
197 greg 2.29 if (hastexture = DOT(r->pert,r->pert) > FTINY*FTINY)
198     nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
199     else {
200     VCOPY(nd.pnorm, r->ron);
201     nd.pdot = r->rod;
202     }
203 greg 1.13 if (nd.pdot < .001)
204     nd.pdot = .001; /* non-zero for dirnorm() */
205 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
206 greg 2.29 mirtest = transtest = 0;
207     mirdist = transdist = r->rot;
208 greg 2.30 nd.rspec = m->oargs.farg[3];
209 greg 1.3 /* compute transmission */
210 greg 1.1 if (m->otype == MAT_TRANS) {
211 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
212     nd.tspec = nd.trans * m->oargs.farg[6];
213     nd.tdiff = nd.trans - nd.tspec;
214 greg 2.2 if (nd.tspec > FTINY) {
215     nd.specfl |= SP_TRAN;
216 greg 2.5 /* check threshold */
217 greg 2.25 if (!(nd.specfl & SP_PURE) &&
218     specthresh >= nd.tspec-FTINY)
219 greg 2.5 nd.specfl |= SP_TBLT;
220 greg 2.29 if (!hastexture || r->crtype & SHADOW) {
221 greg 2.2 VCOPY(nd.prdir, r->rdir);
222     transtest = 2;
223     } else {
224     for (i = 0; i < 3; i++) /* perturb */
225 greg 2.19 nd.prdir[i] = r->rdir[i] - r->pert[i];
226 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
227     normalize(nd.prdir); /* OK */
228     else
229     VCOPY(nd.prdir, r->rdir);
230 greg 2.2 }
231 greg 1.14 }
232 greg 1.1 } else
233 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
234 greg 1.1 /* transmitted ray */
235 greg 2.35 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
236 greg 1.3 RAY lr;
237     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
238 greg 1.14 VCOPY(lr.rdir, nd.prdir);
239 greg 1.1 rayvalue(&lr);
240 greg 1.3 scalecolor(lr.rcol, nd.tspec);
241 greg 1.8 multcolor(lr.rcol, nd.mcolor); /* modified by color */
242 greg 1.1 addcolor(r->rcol, lr.rcol);
243 greg 1.9 transtest *= bright(lr.rcol);
244     transdist = r->rot + lr.rt;
245 greg 1.1 }
246 greg 2.11 } else
247     transtest = 0;
248 greg 2.2
249 greg 2.29 if (r->crtype & SHADOW) { /* the rest is shadow */
250     r->rt = transdist;
251 greg 2.27 return(1);
252 greg 2.30 }
253     /* get specular reflection */
254     if (nd.rspec > FTINY) {
255     nd.specfl |= SP_REFL;
256     /* compute specular color */
257     if (m->otype == MAT_METAL)
258     copycolor(nd.scolor, nd.mcolor);
259     else
260     setcolor(nd.scolor, 1.0, 1.0, 1.0);
261     scalecolor(nd.scolor, nd.rspec);
262     /* check threshold */
263     if (!(nd.specfl & SP_PURE) && specthresh >= nd.rspec-FTINY)
264     nd.specfl |= SP_RBLT;
265     /* compute reflected ray */
266     for (i = 0; i < 3; i++)
267     nd.vrefl[i] = r->rdir[i] + 2.*nd.pdot*nd.pnorm[i];
268     /* penetration? */
269     if (hastexture && DOT(nd.vrefl, r->ron) <= FTINY)
270     for (i = 0; i < 3; i++) /* safety measure */
271     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
272    
273     if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
274     RAY lr;
275     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
276     VCOPY(lr.rdir, nd.vrefl);
277     rayvalue(&lr);
278     multcolor(lr.rcol, nd.scolor);
279     addcolor(r->rcol, lr.rcol);
280     if (!hastexture && nd.specfl & SP_FLAT) {
281     mirtest = 2.*bright(lr.rcol);
282     mirdist = r->rot + lr.rt;
283     }
284     }
285     }
286 greg 2.29 }
287 greg 1.1 /* diffuse reflection */
288 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
289 greg 1.1
290 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
291 greg 2.27 return(1); /* 100% pure specular */
292 greg 2.3
293 greg 2.2 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
294     gaussamp(r, &nd);
295    
296 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
297 greg 2.31 ambient(ctmp, r, hastexture?nd.pnorm:r->ron);
298 greg 2.5 if (nd.specfl & SP_RBLT)
299     scalecolor(ctmp, 1.0-nd.trans);
300     else
301     scalecolor(ctmp, nd.rdiff);
302 greg 1.3 multcolor(ctmp, nd.mcolor); /* modified by material color */
303 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
304     }
305 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
306 greg 1.1 flipsurface(r);
307 greg 2.32 if (hastexture) {
308     FVECT bnorm;
309     bnorm[0] = -nd.pnorm[0];
310     bnorm[1] = -nd.pnorm[1];
311     bnorm[2] = -nd.pnorm[2];
312     ambient(ctmp, r, bnorm);
313     } else
314     ambient(ctmp, r, r->ron);
315 greg 2.5 if (nd.specfl & SP_TBLT)
316     scalecolor(ctmp, nd.trans);
317     else
318     scalecolor(ctmp, nd.tdiff);
319 greg 1.13 multcolor(ctmp, nd.mcolor); /* modified by color */
320 greg 1.1 addcolor(r->rcol, ctmp);
321     flipsurface(r);
322     }
323 greg 1.3 /* add direct component */
324     direct(r, dirnorm, &nd);
325 greg 1.9 /* check distance */
326 greg 2.29 d = bright(r->rcol);
327     if (transtest > d)
328 greg 1.9 r->rt = transdist;
329 greg 2.29 else if (mirtest > d)
330     r->rt = mirdist;
331 greg 2.27
332     return(1);
333 greg 2.2 }
334    
335    
336     static
337     gaussamp(r, np) /* sample gaussian specular */
338     RAY *r;
339     register NORMDAT *np;
340     {
341     RAY sr;
342     FVECT u, v, h;
343     double rv[2];
344     double d, sinp, cosp;
345 greg 2.34 int niter;
346 greg 2.2 register int i;
347 greg 2.13 /* quick test */
348     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
349     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
350     return;
351 greg 2.2 /* set up sample coordinates */
352     v[0] = v[1] = v[2] = 0.0;
353     for (i = 0; i < 3; i++)
354     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
355     break;
356     v[i] = 1.0;
357     fcross(u, v, np->pnorm);
358     normalize(u);
359     fcross(v, np->pnorm, u);
360     /* compute reflection */
361 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
362 greg 2.2 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
363     dimlist[ndims++] = (int)np->mp;
364 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
365     if (niter)
366     d = frandom();
367     else
368     d = urand(ilhash(dimlist,ndims)+samplendx);
369     multisamp(rv, 2, d);
370     d = 2.0*PI * rv[0];
371     cosp = cos(d);
372     sinp = sin(d);
373     rv[1] = 1.0 - specjitter*rv[1];
374     if (rv[1] <= FTINY)
375     d = 1.0;
376     else
377     d = sqrt( np->alpha2 * -log(rv[1]) );
378     for (i = 0; i < 3; i++)
379     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
380     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
381     for (i = 0; i < 3; i++)
382     sr.rdir[i] = r->rdir[i] + d*h[i];
383     if (DOT(sr.rdir, r->ron) > FTINY) {
384     rayvalue(&sr);
385     multcolor(sr.rcol, np->scolor);
386     addcolor(r->rcol, sr.rcol);
387     break;
388     }
389     }
390 greg 2.2 ndims--;
391     }
392     /* compute transmission */
393 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
394     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
395     dimlist[ndims++] = (int)np->mp;
396 greg 2.34 for (niter = 0; niter < MAXITER; niter++) {
397     if (niter)
398     d = frandom();
399     else
400     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
401     multisamp(rv, 2, d);
402     d = 2.0*PI * rv[0];
403     cosp = cos(d);
404     sinp = sin(d);
405     rv[1] = 1.0 - specjitter*rv[1];
406     if (rv[1] <= FTINY)
407     d = 1.0;
408     else
409     d = sqrt( -log(rv[1]) * np->alpha2 );
410     for (i = 0; i < 3; i++)
411     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
412     if (DOT(sr.rdir, r->ron) < -FTINY) {
413     normalize(sr.rdir); /* OK, normalize */
414     rayvalue(&sr);
415     scalecolor(sr.rcol, np->tspec);
416     multcolor(sr.rcol, np->mcolor); /* modified */
417     addcolor(r->rcol, sr.rcol);
418     break;
419     }
420     }
421 greg 2.8 ndims--;
422     }
423 greg 1.1 }