ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.24
Committed: Mon Mar 8 12:37:27 1993 UTC (31 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.23: +2 -0 lines
Log Message:
portability fixes (removed gcc warnings)

File Contents

# User Rev Content
1 greg 2.2 /* Copyright (c) 1992 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * normal.c - shading function for normal materials.
9     *
10     * 8/19/85
11     * 12/19/85 - added stuff for metals.
12     * 6/26/87 - improved specular model.
13     * 9/28/87 - added model for translucent materials.
14 greg 2.2 * Later changes described in delta comments.
15 greg 1.1 */
16    
17     #include "ray.h"
18    
19     #include "otypes.h"
20    
21 greg 2.2 #include "random.h"
22    
23 greg 2.5 extern double specthresh; /* specular sampling threshold */
24     extern double specjitter; /* specular sampling jitter */
25    
26 greg 2.24 static gaussamp();
27    
28 greg 1.1 /*
29 greg 2.22 * This routine implements the isotropic Gaussian
30     * model described by Ward in Siggraph `92 article.
31 greg 1.1 * We orient the surface towards the incoming ray, so a single
32     * surface can be used to represent an infinitely thin object.
33     *
34     * Arguments for MAT_PLASTIC and MAT_METAL are:
35     * red grn blu specular-frac. facet-slope
36     *
37     * Arguments for MAT_TRANS are:
38     * red grn blu rspec rough trans tspec
39     */
40    
41     #define BSPEC(m) (6.0) /* specularity parameter b */
42    
43 greg 2.2 /* specularity flags */
44     #define SP_REFL 01 /* has reflected specular component */
45     #define SP_TRAN 02 /* has transmitted specular */
46 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
47     #define SP_FLAT 010 /* flat reflecting surface */
48     #define SP_RBLT 020 /* reflection below sample threshold */
49     #define SP_TBLT 040 /* transmission below threshold */
50 greg 1.1
51 greg 1.3 typedef struct {
52     OBJREC *mp; /* material pointer */
53 greg 2.16 RAY *rp; /* ray pointer */
54 greg 2.2 short specfl; /* specularity flags, defined above */
55 greg 1.1 COLOR mcolor; /* color of this material */
56     COLOR scolor; /* color of specular component */
57     FVECT vrefl; /* vector in direction of reflected ray */
58 greg 1.14 FVECT prdir; /* vector in transmitted direction */
59 greg 2.2 double alpha2; /* roughness squared */
60 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
61     double trans; /* transmissivity */
62     double tdiff, tspec; /* transmitted specular, diffuse */
63     FVECT pnorm; /* perturbed surface normal */
64     double pdot; /* perturbed dot product */
65 greg 1.3 } NORMDAT; /* normal material data */
66    
67    
68     dirnorm(cval, np, ldir, omega) /* compute source contribution */
69     COLOR cval; /* returned coefficient */
70     register NORMDAT *np; /* material data */
71     FVECT ldir; /* light source direction */
72     double omega; /* light source size */
73     {
74 greg 1.1 double ldot;
75 greg 2.16 double dtmp, d2;
76     FVECT vtmp;
77 greg 1.3 COLOR ctmp;
78    
79     setcolor(cval, 0.0, 0.0, 0.0);
80    
81     ldot = DOT(np->pnorm, ldir);
82    
83     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
84     return; /* wrong side */
85    
86     if (ldot > FTINY && np->rdiff > FTINY) {
87     /*
88 greg 1.4 * Compute and add diffuse reflected component to returned
89     * color. The diffuse reflected component will always be
90     * modified by the color of the material.
91 greg 1.3 */
92     copycolor(ctmp, np->mcolor);
93     dtmp = ldot * omega * np->rdiff / PI;
94     scalecolor(ctmp, dtmp);
95     addcolor(cval, ctmp);
96     }
97 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
98 greg 1.3 /*
99     * Compute specular reflection coefficient using
100     * gaussian distribution model.
101     */
102 greg 2.3 /* roughness */
103 greg 2.16 dtmp = np->alpha2;
104 greg 2.3 /* + source if flat */
105     if (np->specfl & SP_FLAT)
106 greg 2.16 dtmp += omega/(4.0*PI);
107 greg 2.23 /* half vector */
108 greg 2.18 vtmp[0] = ldir[0] - np->rp->rdir[0];
109     vtmp[1] = ldir[1] - np->rp->rdir[1];
110     vtmp[2] = ldir[2] - np->rp->rdir[2];
111 greg 2.16 d2 = DOT(vtmp, np->pnorm);
112 greg 2.23 d2 *= d2;
113     d2 = (DOT(vtmp,vtmp) - d2) / d2;
114 greg 1.3 /* gaussian */
115 greg 2.16 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
116 greg 1.3 /* worth using? */
117     if (dtmp > FTINY) {
118     copycolor(ctmp, np->scolor);
119 greg 2.14 dtmp *= omega * sqrt(ldot/np->pdot);
120 greg 1.3 scalecolor(ctmp, dtmp);
121     addcolor(cval, ctmp);
122     }
123     }
124     if (ldot < -FTINY && np->tdiff > FTINY) {
125     /*
126     * Compute diffuse transmission.
127     */
128     copycolor(ctmp, np->mcolor);
129     dtmp = -ldot * omega * np->tdiff / PI;
130     scalecolor(ctmp, dtmp);
131     addcolor(cval, ctmp);
132     }
133 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
134 greg 1.3 /*
135 greg 1.4 * Compute specular transmission. Specular transmission
136 greg 1.13 * is always modified by material color.
137 greg 1.3 */
138     /* roughness + source */
139 greg 2.19 dtmp = np->alpha2 + omega/PI;
140 greg 1.3 /* gaussian */
141 greg 2.21 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
142 greg 1.3 /* worth using? */
143     if (dtmp > FTINY) {
144 greg 1.13 copycolor(ctmp, np->mcolor);
145 greg 2.18 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
146 greg 1.13 scalecolor(ctmp, dtmp);
147 greg 1.3 addcolor(cval, ctmp);
148     }
149     }
150     }
151    
152    
153 greg 2.2 m_normal(m, r) /* color a ray that hit something normal */
154 greg 1.3 register OBJREC *m;
155     register RAY *r;
156     {
157     NORMDAT nd;
158 greg 1.9 double transtest, transdist;
159 greg 1.1 double dtmp;
160     COLOR ctmp;
161     register int i;
162     /* easy shadow test */
163     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
164     return;
165 greg 2.2
166     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
167     objerror(m, USER, "bad number of arguments");
168 greg 1.3 nd.mp = m;
169 greg 2.16 nd.rp = r;
170 greg 1.1 /* get material color */
171 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
172 greg 1.1 m->oargs.farg[1],
173     m->oargs.farg[2]);
174     /* get roughness */
175 greg 2.2 nd.specfl = 0;
176 greg 1.3 nd.alpha2 = m->oargs.farg[4];
177 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
178     nd.specfl |= SP_PURE;
179 greg 1.1 /* reorient if necessary */
180     if (r->rod < 0.0)
181     flipsurface(r);
182     /* get modifiers */
183     raytexture(r, m->omod);
184 greg 1.3 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
185 greg 1.13 if (nd.pdot < .001)
186     nd.pdot = .001; /* non-zero for dirnorm() */
187 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
188 greg 1.9 transtest = 0;
189 greg 1.1 /* get specular component */
190 greg 2.2 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
191     nd.specfl |= SP_REFL;
192 greg 1.1 /* compute specular color */
193     if (m->otype == MAT_METAL)
194 greg 1.3 copycolor(nd.scolor, nd.mcolor);
195 greg 1.1 else
196 greg 1.3 setcolor(nd.scolor, 1.0, 1.0, 1.0);
197     scalecolor(nd.scolor, nd.rspec);
198 greg 2.15 /* improved model */
199     dtmp = exp(-BSPEC(m)*nd.pdot);
200     for (i = 0; i < 3; i++)
201     colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
202     nd.rspec += (1.0-nd.rspec)*dtmp;
203     /* check threshold */
204     if (!(nd.specfl & SP_PURE) &&
205     specthresh > FTINY &&
206 greg 2.13 (specthresh >= 1.-FTINY ||
207 greg 2.17 specthresh + .05 - .1*frandom() > nd.rspec))
208 greg 2.5 nd.specfl |= SP_RBLT;
209 greg 1.1 /* compute reflected ray */
210     for (i = 0; i < 3; i++)
211 greg 1.3 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
212 greg 2.7 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
213     for (i = 0; i < 3; i++) /* safety measure */
214     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
215 greg 1.1
216 greg 2.2 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
217 greg 1.3 RAY lr;
218     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
219     VCOPY(lr.rdir, nd.vrefl);
220 greg 1.1 rayvalue(&lr);
221 greg 1.3 multcolor(lr.rcol, nd.scolor);
222 greg 1.1 addcolor(r->rcol, lr.rcol);
223     }
224 greg 1.3 }
225 greg 1.1 }
226 greg 1.3 /* compute transmission */
227 greg 1.1 if (m->otype == MAT_TRANS) {
228 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
229     nd.tspec = nd.trans * m->oargs.farg[6];
230     nd.tdiff = nd.trans - nd.tspec;
231 greg 2.2 if (nd.tspec > FTINY) {
232     nd.specfl |= SP_TRAN;
233 greg 2.5 /* check threshold */
234 greg 2.13 if (!(nd.specfl & SP_PURE) && specthresh > FTINY &&
235     (specthresh >= 1.-FTINY ||
236 greg 2.17 specthresh + .05 - .1*frandom() > nd.tspec))
237 greg 2.5 nd.specfl |= SP_TBLT;
238 greg 2.2 if (r->crtype & SHADOW ||
239     DOT(r->pert,r->pert) <= FTINY*FTINY) {
240     VCOPY(nd.prdir, r->rdir);
241     transtest = 2;
242     } else {
243     for (i = 0; i < 3; i++) /* perturb */
244 greg 2.19 nd.prdir[i] = r->rdir[i] - r->pert[i];
245 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
246     normalize(nd.prdir); /* OK */
247     else
248     VCOPY(nd.prdir, r->rdir);
249 greg 2.2 }
250 greg 1.14 }
251 greg 1.1 } else
252 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
253 greg 1.1 /* transmitted ray */
254 greg 2.2 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
255 greg 1.3 RAY lr;
256     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
257 greg 1.14 VCOPY(lr.rdir, nd.prdir);
258 greg 1.1 rayvalue(&lr);
259 greg 1.3 scalecolor(lr.rcol, nd.tspec);
260 greg 1.8 multcolor(lr.rcol, nd.mcolor); /* modified by color */
261 greg 1.1 addcolor(r->rcol, lr.rcol);
262 greg 1.9 transtest *= bright(lr.rcol);
263     transdist = r->rot + lr.rt;
264 greg 1.1 }
265 greg 2.11 } else
266     transtest = 0;
267 greg 2.2
268 greg 1.1 if (r->crtype & SHADOW) /* the rest is shadow */
269     return;
270     /* diffuse reflection */
271 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
272 greg 1.1
273 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
274     return; /* 100% pure specular */
275 greg 2.3
276 greg 2.12 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
277     r->ro->otype == OBJ_RING))
278 greg 2.3 nd.specfl |= SP_FLAT;
279 greg 1.1
280 greg 2.2 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
281     gaussamp(r, &nd);
282    
283 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
284 greg 1.2 ambient(ctmp, r);
285 greg 2.5 if (nd.specfl & SP_RBLT)
286     scalecolor(ctmp, 1.0-nd.trans);
287     else
288     scalecolor(ctmp, nd.rdiff);
289 greg 1.3 multcolor(ctmp, nd.mcolor); /* modified by material color */
290 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
291     }
292 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
293 greg 1.1 flipsurface(r);
294 greg 1.2 ambient(ctmp, r);
295 greg 2.5 if (nd.specfl & SP_TBLT)
296     scalecolor(ctmp, nd.trans);
297     else
298     scalecolor(ctmp, nd.tdiff);
299 greg 1.13 multcolor(ctmp, nd.mcolor); /* modified by color */
300 greg 1.1 addcolor(r->rcol, ctmp);
301     flipsurface(r);
302     }
303 greg 1.3 /* add direct component */
304     direct(r, dirnorm, &nd);
305 greg 1.9 /* check distance */
306     if (transtest > bright(r->rcol))
307     r->rt = transdist;
308 greg 2.2 }
309    
310    
311     static
312     gaussamp(r, np) /* sample gaussian specular */
313     RAY *r;
314     register NORMDAT *np;
315     {
316     RAY sr;
317     FVECT u, v, h;
318     double rv[2];
319     double d, sinp, cosp;
320     register int i;
321 greg 2.13 /* quick test */
322     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
323     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
324     return;
325 greg 2.2 /* set up sample coordinates */
326     v[0] = v[1] = v[2] = 0.0;
327     for (i = 0; i < 3; i++)
328     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
329     break;
330     v[i] = 1.0;
331     fcross(u, v, np->pnorm);
332     normalize(u);
333     fcross(v, np->pnorm, u);
334     /* compute reflection */
335 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
336 greg 2.2 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
337     dimlist[ndims++] = (int)np->mp;
338 greg 2.7 d = urand(ilhash(dimlist,ndims)+samplendx);
339     multisamp(rv, 2, d);
340     d = 2.0*PI * rv[0];
341     cosp = cos(d);
342     sinp = sin(d);
343     rv[1] = 1.0 - specjitter*rv[1];
344     if (rv[1] <= FTINY)
345     d = 1.0;
346     else
347     d = sqrt( np->alpha2 * -log(rv[1]) );
348     for (i = 0; i < 3; i++)
349     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
350     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
351     for (i = 0; i < 3; i++)
352     sr.rdir[i] = r->rdir[i] + d*h[i];
353     if (DOT(sr.rdir, r->ron) <= FTINY)
354     VCOPY(sr.rdir, np->vrefl); /* jitter no good */
355     rayvalue(&sr);
356     multcolor(sr.rcol, np->scolor);
357     addcolor(r->rcol, sr.rcol);
358 greg 2.2 ndims--;
359     }
360     /* compute transmission */
361 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
362     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
363     dimlist[ndims++] = (int)np->mp;
364     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
365     multisamp(rv, 2, d);
366     d = 2.0*PI * rv[0];
367     cosp = cos(d);
368     sinp = sin(d);
369     rv[1] = 1.0 - specjitter*rv[1];
370     if (rv[1] <= FTINY)
371     d = 1.0;
372     else
373 greg 2.20 d = sqrt( -log(rv[1]) * np->alpha2 );
374 greg 2.8 for (i = 0; i < 3; i++)
375     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
376     if (DOT(sr.rdir, r->ron) < -FTINY)
377     normalize(sr.rdir); /* OK, normalize */
378     else
379     VCOPY(sr.rdir, np->prdir); /* else no jitter */
380     rayvalue(&sr);
381 greg 2.11 scalecolor(sr.rcol, np->tspec);
382     multcolor(sr.rcol, np->mcolor); /* modified by color */
383 greg 2.8 addcolor(r->rcol, sr.rcol);
384     ndims--;
385     }
386 greg 1.1 }