ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.22
Committed: Fri Oct 16 10:20:29 1992 UTC (31 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.21: +2 -4 lines
Log Message:
fixed comments in header

File Contents

# User Rev Content
1 greg 2.2 /* Copyright (c) 1992 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * normal.c - shading function for normal materials.
9     *
10     * 8/19/85
11     * 12/19/85 - added stuff for metals.
12     * 6/26/87 - improved specular model.
13     * 9/28/87 - added model for translucent materials.
14 greg 2.2 * Later changes described in delta comments.
15 greg 1.1 */
16    
17     #include "ray.h"
18    
19     #include "otypes.h"
20    
21 greg 2.2 #include "random.h"
22    
23 greg 2.5 extern double specthresh; /* specular sampling threshold */
24     extern double specjitter; /* specular sampling jitter */
25    
26 greg 1.1 /*
27 greg 2.22 * This routine implements the isotropic Gaussian
28     * model described by Ward in Siggraph `92 article.
29 greg 1.1 * We orient the surface towards the incoming ray, so a single
30     * surface can be used to represent an infinitely thin object.
31     *
32     * Arguments for MAT_PLASTIC and MAT_METAL are:
33     * red grn blu specular-frac. facet-slope
34     *
35     * Arguments for MAT_TRANS are:
36     * red grn blu rspec rough trans tspec
37     */
38    
39     #define BSPEC(m) (6.0) /* specularity parameter b */
40    
41 greg 2.2 /* specularity flags */
42     #define SP_REFL 01 /* has reflected specular component */
43     #define SP_TRAN 02 /* has transmitted specular */
44 greg 2.11 #define SP_PURE 04 /* purely specular (zero roughness) */
45     #define SP_FLAT 010 /* flat reflecting surface */
46     #define SP_RBLT 020 /* reflection below sample threshold */
47     #define SP_TBLT 040 /* transmission below threshold */
48 greg 1.1
49 greg 1.3 typedef struct {
50     OBJREC *mp; /* material pointer */
51 greg 2.16 RAY *rp; /* ray pointer */
52 greg 2.2 short specfl; /* specularity flags, defined above */
53 greg 1.1 COLOR mcolor; /* color of this material */
54     COLOR scolor; /* color of specular component */
55     FVECT vrefl; /* vector in direction of reflected ray */
56 greg 1.14 FVECT prdir; /* vector in transmitted direction */
57 greg 2.2 double alpha2; /* roughness squared */
58 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
59     double trans; /* transmissivity */
60     double tdiff, tspec; /* transmitted specular, diffuse */
61     FVECT pnorm; /* perturbed surface normal */
62     double pdot; /* perturbed dot product */
63 greg 1.3 } NORMDAT; /* normal material data */
64    
65    
66     dirnorm(cval, np, ldir, omega) /* compute source contribution */
67     COLOR cval; /* returned coefficient */
68     register NORMDAT *np; /* material data */
69     FVECT ldir; /* light source direction */
70     double omega; /* light source size */
71     {
72 greg 1.1 double ldot;
73 greg 2.16 double dtmp, d2;
74     FVECT vtmp;
75 greg 1.3 COLOR ctmp;
76    
77     setcolor(cval, 0.0, 0.0, 0.0);
78    
79     ldot = DOT(np->pnorm, ldir);
80    
81     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
82     return; /* wrong side */
83    
84     if (ldot > FTINY && np->rdiff > FTINY) {
85     /*
86 greg 1.4 * Compute and add diffuse reflected component to returned
87     * color. The diffuse reflected component will always be
88     * modified by the color of the material.
89 greg 1.3 */
90     copycolor(ctmp, np->mcolor);
91     dtmp = ldot * omega * np->rdiff / PI;
92     scalecolor(ctmp, dtmp);
93     addcolor(cval, ctmp);
94     }
95 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
96 greg 1.3 /*
97     * Compute specular reflection coefficient using
98     * gaussian distribution model.
99     */
100 greg 2.3 /* roughness */
101 greg 2.16 dtmp = np->alpha2;
102 greg 2.3 /* + source if flat */
103     if (np->specfl & SP_FLAT)
104 greg 2.16 dtmp += omega/(4.0*PI);
105     /* delta */
106 greg 2.18 vtmp[0] = ldir[0] - np->rp->rdir[0];
107     vtmp[1] = ldir[1] - np->rp->rdir[1];
108     vtmp[2] = ldir[2] - np->rp->rdir[2];
109 greg 2.16 d2 = DOT(vtmp, np->pnorm);
110     d2 = 2.0 - 2.0*d2/sqrt(DOT(vtmp,vtmp));
111 greg 1.3 /* gaussian */
112 greg 2.16 dtmp = exp(-d2/dtmp)/(4.*PI*dtmp);
113 greg 1.3 /* worth using? */
114     if (dtmp > FTINY) {
115     copycolor(ctmp, np->scolor);
116 greg 2.14 dtmp *= omega * sqrt(ldot/np->pdot);
117 greg 1.3 scalecolor(ctmp, dtmp);
118     addcolor(cval, ctmp);
119     }
120     }
121     if (ldot < -FTINY && np->tdiff > FTINY) {
122     /*
123     * Compute diffuse transmission.
124     */
125     copycolor(ctmp, np->mcolor);
126     dtmp = -ldot * omega * np->tdiff / PI;
127     scalecolor(ctmp, dtmp);
128     addcolor(cval, ctmp);
129     }
130 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
131 greg 1.3 /*
132 greg 1.4 * Compute specular transmission. Specular transmission
133 greg 1.13 * is always modified by material color.
134 greg 1.3 */
135     /* roughness + source */
136 greg 2.19 dtmp = np->alpha2 + omega/PI;
137 greg 1.3 /* gaussian */
138 greg 2.21 dtmp = exp((2.*DOT(np->prdir,ldir)-2.)/dtmp)/(PI*dtmp);
139 greg 1.3 /* worth using? */
140     if (dtmp > FTINY) {
141 greg 1.13 copycolor(ctmp, np->mcolor);
142 greg 2.18 dtmp *= np->tspec * omega * sqrt(-ldot/np->pdot);
143 greg 1.13 scalecolor(ctmp, dtmp);
144 greg 1.3 addcolor(cval, ctmp);
145     }
146     }
147     }
148    
149    
150 greg 2.2 m_normal(m, r) /* color a ray that hit something normal */
151 greg 1.3 register OBJREC *m;
152     register RAY *r;
153     {
154     NORMDAT nd;
155 greg 1.9 double transtest, transdist;
156 greg 1.1 double dtmp;
157     COLOR ctmp;
158     register int i;
159     /* easy shadow test */
160     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
161     return;
162 greg 2.2
163     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
164     objerror(m, USER, "bad number of arguments");
165 greg 1.3 nd.mp = m;
166 greg 2.16 nd.rp = r;
167 greg 1.1 /* get material color */
168 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
169 greg 1.1 m->oargs.farg[1],
170     m->oargs.farg[2]);
171     /* get roughness */
172 greg 2.2 nd.specfl = 0;
173 greg 1.3 nd.alpha2 = m->oargs.farg[4];
174 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
175     nd.specfl |= SP_PURE;
176 greg 1.1 /* reorient if necessary */
177     if (r->rod < 0.0)
178     flipsurface(r);
179     /* get modifiers */
180     raytexture(r, m->omod);
181 greg 1.3 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
182 greg 1.13 if (nd.pdot < .001)
183     nd.pdot = .001; /* non-zero for dirnorm() */
184 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
185 greg 1.9 transtest = 0;
186 greg 1.1 /* get specular component */
187 greg 2.2 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
188     nd.specfl |= SP_REFL;
189 greg 1.1 /* compute specular color */
190     if (m->otype == MAT_METAL)
191 greg 1.3 copycolor(nd.scolor, nd.mcolor);
192 greg 1.1 else
193 greg 1.3 setcolor(nd.scolor, 1.0, 1.0, 1.0);
194     scalecolor(nd.scolor, nd.rspec);
195 greg 2.15 /* improved model */
196     dtmp = exp(-BSPEC(m)*nd.pdot);
197     for (i = 0; i < 3; i++)
198     colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
199     nd.rspec += (1.0-nd.rspec)*dtmp;
200     /* check threshold */
201     if (!(nd.specfl & SP_PURE) &&
202     specthresh > FTINY &&
203 greg 2.13 (specthresh >= 1.-FTINY ||
204 greg 2.17 specthresh + .05 - .1*frandom() > nd.rspec))
205 greg 2.5 nd.specfl |= SP_RBLT;
206 greg 1.1 /* compute reflected ray */
207     for (i = 0; i < 3; i++)
208 greg 1.3 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
209 greg 2.7 if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
210     for (i = 0; i < 3; i++) /* safety measure */
211     nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
212 greg 1.1
213 greg 2.2 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
214 greg 1.3 RAY lr;
215     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
216     VCOPY(lr.rdir, nd.vrefl);
217 greg 1.1 rayvalue(&lr);
218 greg 1.3 multcolor(lr.rcol, nd.scolor);
219 greg 1.1 addcolor(r->rcol, lr.rcol);
220     }
221 greg 1.3 }
222 greg 1.1 }
223 greg 1.3 /* compute transmission */
224 greg 1.1 if (m->otype == MAT_TRANS) {
225 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
226     nd.tspec = nd.trans * m->oargs.farg[6];
227     nd.tdiff = nd.trans - nd.tspec;
228 greg 2.2 if (nd.tspec > FTINY) {
229     nd.specfl |= SP_TRAN;
230 greg 2.5 /* check threshold */
231 greg 2.13 if (!(nd.specfl & SP_PURE) && specthresh > FTINY &&
232     (specthresh >= 1.-FTINY ||
233 greg 2.17 specthresh + .05 - .1*frandom() > nd.tspec))
234 greg 2.5 nd.specfl |= SP_TBLT;
235 greg 2.2 if (r->crtype & SHADOW ||
236     DOT(r->pert,r->pert) <= FTINY*FTINY) {
237     VCOPY(nd.prdir, r->rdir);
238     transtest = 2;
239     } else {
240     for (i = 0; i < 3; i++) /* perturb */
241 greg 2.19 nd.prdir[i] = r->rdir[i] - r->pert[i];
242 greg 2.7 if (DOT(nd.prdir, r->ron) < -FTINY)
243     normalize(nd.prdir); /* OK */
244     else
245     VCOPY(nd.prdir, r->rdir);
246 greg 2.2 }
247 greg 1.14 }
248 greg 1.1 } else
249 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
250 greg 1.1 /* transmitted ray */
251 greg 2.2 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
252 greg 1.3 RAY lr;
253     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
254 greg 1.14 VCOPY(lr.rdir, nd.prdir);
255 greg 1.1 rayvalue(&lr);
256 greg 1.3 scalecolor(lr.rcol, nd.tspec);
257 greg 1.8 multcolor(lr.rcol, nd.mcolor); /* modified by color */
258 greg 1.1 addcolor(r->rcol, lr.rcol);
259 greg 1.9 transtest *= bright(lr.rcol);
260     transdist = r->rot + lr.rt;
261 greg 1.1 }
262 greg 2.11 } else
263     transtest = 0;
264 greg 2.2
265 greg 1.1 if (r->crtype & SHADOW) /* the rest is shadow */
266     return;
267     /* diffuse reflection */
268 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
269 greg 1.1
270 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
271     return; /* 100% pure specular */
272 greg 2.3
273 greg 2.12 if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
274     r->ro->otype == OBJ_RING))
275 greg 2.3 nd.specfl |= SP_FLAT;
276 greg 1.1
277 greg 2.2 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
278     gaussamp(r, &nd);
279    
280 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
281 greg 1.2 ambient(ctmp, r);
282 greg 2.5 if (nd.specfl & SP_RBLT)
283     scalecolor(ctmp, 1.0-nd.trans);
284     else
285     scalecolor(ctmp, nd.rdiff);
286 greg 1.3 multcolor(ctmp, nd.mcolor); /* modified by material color */
287 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
288     }
289 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
290 greg 1.1 flipsurface(r);
291 greg 1.2 ambient(ctmp, r);
292 greg 2.5 if (nd.specfl & SP_TBLT)
293     scalecolor(ctmp, nd.trans);
294     else
295     scalecolor(ctmp, nd.tdiff);
296 greg 1.13 multcolor(ctmp, nd.mcolor); /* modified by color */
297 greg 1.1 addcolor(r->rcol, ctmp);
298     flipsurface(r);
299     }
300 greg 1.3 /* add direct component */
301     direct(r, dirnorm, &nd);
302 greg 1.9 /* check distance */
303     if (transtest > bright(r->rcol))
304     r->rt = transdist;
305 greg 2.2 }
306    
307    
308     static
309     gaussamp(r, np) /* sample gaussian specular */
310     RAY *r;
311     register NORMDAT *np;
312     {
313     RAY sr;
314     FVECT u, v, h;
315     double rv[2];
316     double d, sinp, cosp;
317     register int i;
318 greg 2.13 /* quick test */
319     if ((np->specfl & (SP_REFL|SP_RBLT)) != SP_REFL &&
320     (np->specfl & (SP_TRAN|SP_TBLT)) != SP_TRAN)
321     return;
322 greg 2.2 /* set up sample coordinates */
323     v[0] = v[1] = v[2] = 0.0;
324     for (i = 0; i < 3; i++)
325     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
326     break;
327     v[i] = 1.0;
328     fcross(u, v, np->pnorm);
329     normalize(u);
330     fcross(v, np->pnorm, u);
331     /* compute reflection */
332 greg 2.5 if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
333 greg 2.2 rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
334     dimlist[ndims++] = (int)np->mp;
335 greg 2.7 d = urand(ilhash(dimlist,ndims)+samplendx);
336     multisamp(rv, 2, d);
337     d = 2.0*PI * rv[0];
338     cosp = cos(d);
339     sinp = sin(d);
340     rv[1] = 1.0 - specjitter*rv[1];
341     if (rv[1] <= FTINY)
342     d = 1.0;
343     else
344     d = sqrt( np->alpha2 * -log(rv[1]) );
345     for (i = 0; i < 3; i++)
346     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
347     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
348     for (i = 0; i < 3; i++)
349     sr.rdir[i] = r->rdir[i] + d*h[i];
350     if (DOT(sr.rdir, r->ron) <= FTINY)
351     VCOPY(sr.rdir, np->vrefl); /* jitter no good */
352     rayvalue(&sr);
353     multcolor(sr.rcol, np->scolor);
354     addcolor(r->rcol, sr.rcol);
355 greg 2.2 ndims--;
356     }
357     /* compute transmission */
358 greg 2.8 if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
359     rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
360     dimlist[ndims++] = (int)np->mp;
361     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
362     multisamp(rv, 2, d);
363     d = 2.0*PI * rv[0];
364     cosp = cos(d);
365     sinp = sin(d);
366     rv[1] = 1.0 - specjitter*rv[1];
367     if (rv[1] <= FTINY)
368     d = 1.0;
369     else
370 greg 2.20 d = sqrt( -log(rv[1]) * np->alpha2 );
371 greg 2.8 for (i = 0; i < 3; i++)
372     sr.rdir[i] = np->prdir[i] + d*(cosp*u[i] + sinp*v[i]);
373     if (DOT(sr.rdir, r->ron) < -FTINY)
374     normalize(sr.rdir); /* OK, normalize */
375     else
376     VCOPY(sr.rdir, np->prdir); /* else no jitter */
377     rayvalue(&sr);
378 greg 2.11 scalecolor(sr.rcol, np->tspec);
379     multcolor(sr.rcol, np->mcolor); /* modified by color */
380 greg 2.8 addcolor(r->rcol, sr.rcol);
381     ndims--;
382     }
383 greg 1.1 }