ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 2.2
Committed: Sat Jan 4 19:53:53 1992 UTC (32 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.1: +96 -33 lines
Log Message:
added specular sampling

File Contents

# User Rev Content
1 greg 2.2 /* Copyright (c) 1992 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * normal.c - shading function for normal materials.
9     *
10     * 8/19/85
11     * 12/19/85 - added stuff for metals.
12     * 6/26/87 - improved specular model.
13     * 9/28/87 - added model for translucent materials.
14 greg 2.2 * Later changes described in delta comments.
15 greg 1.1 */
16    
17     #include "ray.h"
18    
19     #include "otypes.h"
20    
21 greg 2.2 #include "random.h"
22    
23 greg 1.1 /*
24     * This routine uses portions of the reflection
25     * model described by Cook and Torrance.
26     * The computation of specular components has been simplified by
27     * numerous approximations and ommisions to improve speed.
28     * We orient the surface towards the incoming ray, so a single
29     * surface can be used to represent an infinitely thin object.
30     *
31     * Arguments for MAT_PLASTIC and MAT_METAL are:
32     * red grn blu specular-frac. facet-slope
33     *
34     * Arguments for MAT_TRANS are:
35     * red grn blu rspec rough trans tspec
36     */
37    
38     #define BSPEC(m) (6.0) /* specularity parameter b */
39    
40 greg 2.2 /* specularity flags */
41     #define SP_REFL 01 /* has reflected specular component */
42     #define SP_TRAN 02 /* has transmitted specular */
43     #define SP_PURE 010 /* purely specular (zero roughness) */
44 greg 1.1
45 greg 1.3 typedef struct {
46     OBJREC *mp; /* material pointer */
47 greg 2.2 short specfl; /* specularity flags, defined above */
48 greg 1.1 COLOR mcolor; /* color of this material */
49     COLOR scolor; /* color of specular component */
50     FVECT vrefl; /* vector in direction of reflected ray */
51 greg 1.14 FVECT prdir; /* vector in transmitted direction */
52 greg 2.2 double alpha2; /* roughness squared */
53 greg 1.1 double rdiff, rspec; /* reflected specular, diffuse */
54     double trans; /* transmissivity */
55     double tdiff, tspec; /* transmitted specular, diffuse */
56     FVECT pnorm; /* perturbed surface normal */
57     double pdot; /* perturbed dot product */
58 greg 1.3 } NORMDAT; /* normal material data */
59    
60    
61     dirnorm(cval, np, ldir, omega) /* compute source contribution */
62     COLOR cval; /* returned coefficient */
63     register NORMDAT *np; /* material data */
64     FVECT ldir; /* light source direction */
65     double omega; /* light source size */
66     {
67 greg 1.1 double ldot;
68 greg 1.3 double dtmp;
69     COLOR ctmp;
70    
71     setcolor(cval, 0.0, 0.0, 0.0);
72    
73     ldot = DOT(np->pnorm, ldir);
74    
75     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
76     return; /* wrong side */
77    
78     if (ldot > FTINY && np->rdiff > FTINY) {
79     /*
80 greg 1.4 * Compute and add diffuse reflected component to returned
81     * color. The diffuse reflected component will always be
82     * modified by the color of the material.
83 greg 1.3 */
84     copycolor(ctmp, np->mcolor);
85     dtmp = ldot * omega * np->rdiff / PI;
86     scalecolor(ctmp, dtmp);
87     addcolor(cval, ctmp);
88     }
89 greg 2.2 if (ldot > FTINY && (np->specfl&(SP_REFL|SP_PURE)) == SP_REFL) {
90 greg 1.3 /*
91     * Compute specular reflection coefficient using
92     * gaussian distribution model.
93     */
94     /* roughness + source */
95 greg 2.2 dtmp = 2.0*np->alpha2 + omega/(2.0*PI);
96 greg 1.3 /* gaussian */
97     dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
98     /* worth using? */
99     if (dtmp > FTINY) {
100     copycolor(ctmp, np->scolor);
101 greg 1.13 dtmp *= omega / np->pdot;
102 greg 1.3 scalecolor(ctmp, dtmp);
103     addcolor(cval, ctmp);
104     }
105     }
106     if (ldot < -FTINY && np->tdiff > FTINY) {
107     /*
108     * Compute diffuse transmission.
109     */
110     copycolor(ctmp, np->mcolor);
111     dtmp = -ldot * omega * np->tdiff / PI;
112     scalecolor(ctmp, dtmp);
113     addcolor(cval, ctmp);
114     }
115 greg 2.2 if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_PURE)) == SP_TRAN) {
116 greg 1.3 /*
117 greg 1.4 * Compute specular transmission. Specular transmission
118 greg 1.13 * is always modified by material color.
119 greg 1.3 */
120     /* roughness + source */
121     dtmp = np->alpha2 + omega/(2.0*PI);
122     /* gaussian */
123 greg 1.14 dtmp = exp((DOT(np->prdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
124 greg 1.3 /* worth using? */
125     if (dtmp > FTINY) {
126 greg 1.13 copycolor(ctmp, np->mcolor);
127     dtmp *= np->tspec * omega / np->pdot;
128     scalecolor(ctmp, dtmp);
129 greg 1.3 addcolor(cval, ctmp);
130     }
131     }
132     }
133    
134    
135 greg 2.2 m_normal(m, r) /* color a ray that hit something normal */
136 greg 1.3 register OBJREC *m;
137     register RAY *r;
138     {
139     NORMDAT nd;
140 greg 1.9 double transtest, transdist;
141 greg 1.1 double dtmp;
142     COLOR ctmp;
143     register int i;
144     /* easy shadow test */
145     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
146     return;
147 greg 2.2
148     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
149     objerror(m, USER, "bad number of arguments");
150 greg 1.3 nd.mp = m;
151 greg 1.1 /* get material color */
152 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
153 greg 1.1 m->oargs.farg[1],
154     m->oargs.farg[2]);
155     /* get roughness */
156 greg 2.2 nd.specfl = 0;
157 greg 1.3 nd.alpha2 = m->oargs.farg[4];
158 greg 2.2 if ((nd.alpha2 *= nd.alpha2) <= FTINY)
159     nd.specfl |= SP_PURE;
160 greg 1.1 /* reorient if necessary */
161     if (r->rod < 0.0)
162     flipsurface(r);
163     /* get modifiers */
164     raytexture(r, m->omod);
165 greg 1.3 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
166 greg 1.13 if (nd.pdot < .001)
167     nd.pdot = .001; /* non-zero for dirnorm() */
168 greg 1.3 multcolor(nd.mcolor, r->pcol); /* modify material color */
169 greg 1.9 transtest = 0;
170 greg 1.1 /* get specular component */
171 greg 2.2 if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
172     nd.specfl |= SP_REFL;
173 greg 1.1 /* compute specular color */
174     if (m->otype == MAT_METAL)
175 greg 1.3 copycolor(nd.scolor, nd.mcolor);
176 greg 1.1 else
177 greg 1.3 setcolor(nd.scolor, 1.0, 1.0, 1.0);
178     scalecolor(nd.scolor, nd.rspec);
179 greg 1.1 /* improved model */
180 greg 1.3 dtmp = exp(-BSPEC(m)*nd.pdot);
181 greg 1.1 for (i = 0; i < 3; i++)
182 greg 1.3 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
183     nd.rspec += (1.0-nd.rspec)*dtmp;
184 greg 1.1 /* compute reflected ray */
185     for (i = 0; i < 3; i++)
186 greg 1.3 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
187 greg 1.1
188 greg 2.2 if (!(r->crtype & SHADOW) && nd.specfl & SP_PURE) {
189 greg 1.3 RAY lr;
190     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
191     VCOPY(lr.rdir, nd.vrefl);
192 greg 1.1 rayvalue(&lr);
193 greg 1.3 multcolor(lr.rcol, nd.scolor);
194 greg 1.1 addcolor(r->rcol, lr.rcol);
195     }
196 greg 1.3 }
197 greg 1.1 }
198 greg 1.3 /* compute transmission */
199 greg 1.1 if (m->otype == MAT_TRANS) {
200 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
201     nd.tspec = nd.trans * m->oargs.farg[6];
202     nd.tdiff = nd.trans - nd.tspec;
203 greg 2.2 if (nd.tspec > FTINY) {
204     nd.specfl |= SP_TRAN;
205     if (r->crtype & SHADOW ||
206     DOT(r->pert,r->pert) <= FTINY*FTINY) {
207     VCOPY(nd.prdir, r->rdir);
208     transtest = 2;
209     } else {
210     for (i = 0; i < 3; i++) /* perturb */
211     nd.prdir[i] = r->rdir[i] -
212     .75*r->pert[i];
213     normalize(nd.prdir);
214     }
215 greg 1.14 }
216 greg 1.1 } else
217 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
218 greg 1.1 /* transmitted ray */
219 greg 2.2 if ((nd.specfl&(SP_TRAN|SP_PURE)) == (SP_TRAN|SP_PURE)) {
220 greg 1.3 RAY lr;
221     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
222 greg 1.14 VCOPY(lr.rdir, nd.prdir);
223 greg 1.1 rayvalue(&lr);
224 greg 1.3 scalecolor(lr.rcol, nd.tspec);
225 greg 1.8 multcolor(lr.rcol, nd.mcolor); /* modified by color */
226 greg 1.1 addcolor(r->rcol, lr.rcol);
227 greg 1.9 transtest *= bright(lr.rcol);
228     transdist = r->rot + lr.rt;
229 greg 1.1 }
230 greg 1.3 }
231 greg 2.2
232 greg 1.1 if (r->crtype & SHADOW) /* the rest is shadow */
233     return;
234     /* diffuse reflection */
235 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
236 greg 1.1
237 greg 2.2 if (nd.specfl & SP_PURE && nd.rdiff <= FTINY && nd.tdiff <= FTINY)
238     return; /* 100% pure specular */
239 greg 1.1
240 greg 2.2 if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_PURE))
241     gaussamp(r, &nd);
242    
243 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
244 greg 1.2 ambient(ctmp, r);
245 greg 2.2 scalecolor(ctmp, nd.rdiff);
246 greg 1.3 multcolor(ctmp, nd.mcolor); /* modified by material color */
247 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
248     }
249 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
250 greg 1.1 flipsurface(r);
251 greg 1.2 ambient(ctmp, r);
252 greg 2.2 scalecolor(ctmp, nd.tdiff);
253 greg 1.13 multcolor(ctmp, nd.mcolor); /* modified by color */
254 greg 1.1 addcolor(r->rcol, ctmp);
255     flipsurface(r);
256     }
257 greg 1.3 /* add direct component */
258     direct(r, dirnorm, &nd);
259 greg 1.9 /* check distance */
260     if (transtest > bright(r->rcol))
261     r->rt = transdist;
262 greg 2.2 }
263    
264    
265     static
266     gaussamp(r, np) /* sample gaussian specular */
267     RAY *r;
268     register NORMDAT *np;
269     {
270     RAY sr;
271     FVECT u, v, h;
272     double rv[2];
273     double d, sinp, cosp;
274     int confuse;
275     register int i;
276     /* set up sample coordinates */
277     v[0] = v[1] = v[2] = 0.0;
278     for (i = 0; i < 3; i++)
279     if (np->pnorm[i] < 0.6 && np->pnorm[i] > -0.6)
280     break;
281     v[i] = 1.0;
282     fcross(u, v, np->pnorm);
283     normalize(u);
284     fcross(v, np->pnorm, u);
285     /* compute reflection */
286     if (np->specfl & SP_REFL &&
287     rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
288     confuse = 0;
289     dimlist[ndims++] = (int)np->mp;
290     refagain:
291     dimlist[ndims] = confuse += 3601;
292     d = urand(ilhash(dimlist,ndims+1)+samplendx);
293     multisamp(rv, 2, d);
294     d = 2.0*PI * rv[0];
295     cosp = cos(d);
296     sinp = sin(d);
297     if (rv[1] <= FTINY)
298     d = 1.0;
299     else
300     d = sqrt( np->alpha2 * -log(rv[1]) );
301     for (i = 0; i < 3; i++)
302     h[i] = np->pnorm[i] + d*(cosp*u[i] + sinp*v[i]);
303     d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
304     for (i = 0; i < 3; i++)
305     sr.rdir[i] = r->rdir[i] + d*h[i];
306     if (DOT(sr.rdir, r->ron) <= FTINY) /* oops! */
307     goto refagain;
308     rayvalue(&sr);
309     multcolor(sr.rcol, np->scolor);
310     addcolor(r->rcol, sr.rcol);
311     ndims--;
312     }
313     /* compute transmission */
314 greg 1.1 }