ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 1.6
Committed: Tue Jun 26 09:00:10 1990 UTC (33 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.5: +0 -2 lines
Log Message:
Nit-picking for Stardent C-compiler

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1986 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * normal.c - shading function for normal materials.
9     *
10     * 8/19/85
11     * 12/19/85 - added stuff for metals.
12     * 6/26/87 - improved specular model.
13     * 9/28/87 - added model for translucent materials.
14     */
15    
16     #include "ray.h"
17    
18     #include "otypes.h"
19    
20     /*
21     * This routine uses portions of the reflection
22     * model described by Cook and Torrance.
23     * The computation of specular components has been simplified by
24     * numerous approximations and ommisions to improve speed.
25     * We orient the surface towards the incoming ray, so a single
26     * surface can be used to represent an infinitely thin object.
27     *
28     * Arguments for MAT_PLASTIC and MAT_METAL are:
29     * red grn blu specular-frac. facet-slope
30     *
31     * Arguments for MAT_TRANS are:
32     * red grn blu rspec rough trans tspec
33     */
34    
35     #define BSPEC(m) (6.0) /* specularity parameter b */
36    
37 greg 1.3 extern double exp();
38 greg 1.1
39 greg 1.3 typedef struct {
40     OBJREC *mp; /* material pointer */
41     RAY *pr; /* intersected ray */
42 greg 1.1 COLOR mcolor; /* color of this material */
43     COLOR scolor; /* color of specular component */
44     FVECT vrefl; /* vector in direction of reflected ray */
45     double alpha2; /* roughness squared times 2 */
46     double rdiff, rspec; /* reflected specular, diffuse */
47     double trans; /* transmissivity */
48     double tdiff, tspec; /* transmitted specular, diffuse */
49     FVECT pnorm; /* perturbed surface normal */
50     double pdot; /* perturbed dot product */
51 greg 1.3 } NORMDAT; /* normal material data */
52    
53    
54     dirnorm(cval, np, ldir, omega) /* compute source contribution */
55     COLOR cval; /* returned coefficient */
56     register NORMDAT *np; /* material data */
57     FVECT ldir; /* light source direction */
58     double omega; /* light source size */
59     {
60 greg 1.1 double ldot;
61 greg 1.3 double dtmp;
62     COLOR ctmp;
63    
64     setcolor(cval, 0.0, 0.0, 0.0);
65    
66     ldot = DOT(np->pnorm, ldir);
67    
68     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
69     return; /* wrong side */
70    
71     if (ldot > FTINY && np->rdiff > FTINY) {
72     /*
73 greg 1.4 * Compute and add diffuse reflected component to returned
74     * color. The diffuse reflected component will always be
75     * modified by the color of the material.
76 greg 1.3 */
77     copycolor(ctmp, np->mcolor);
78     dtmp = ldot * omega * np->rdiff / PI;
79     scalecolor(ctmp, dtmp);
80     addcolor(cval, ctmp);
81     }
82     if (ldot > FTINY && np->rspec > FTINY && np->alpha2 > FTINY) {
83     /*
84     * Compute specular reflection coefficient using
85     * gaussian distribution model.
86     */
87     /* roughness + source */
88     dtmp = np->alpha2 + omega/(2.0*PI);
89     /* gaussian */
90     dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
91     /* worth using? */
92     if (dtmp > FTINY) {
93     copycolor(ctmp, np->scolor);
94     dtmp *= omega;
95     scalecolor(ctmp, dtmp);
96     addcolor(cval, ctmp);
97     }
98     }
99     if (ldot < -FTINY && np->tdiff > FTINY) {
100     /*
101     * Compute diffuse transmission.
102     */
103     copycolor(ctmp, np->mcolor);
104     dtmp = -ldot * omega * np->tdiff / PI;
105     scalecolor(ctmp, dtmp);
106     addcolor(cval, ctmp);
107     }
108     if (ldot < -FTINY && np->tspec > FTINY && np->alpha2 > FTINY) {
109     /*
110 greg 1.4 * Compute specular transmission. Specular transmission
111     * is unaffected by material color.
112 greg 1.3 */
113     /* roughness + source */
114     dtmp = np->alpha2 + omega/(2.0*PI);
115     /* gaussian */
116     dtmp = exp((DOT(np->pr->rdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
117     /* worth using? */
118     if (dtmp > FTINY) {
119     dtmp *= np->tspec * omega;
120 greg 1.4 setcolor(ctmp, dtmp, dtmp, dtmp);
121 greg 1.3 addcolor(cval, ctmp);
122     }
123     }
124     }
125    
126    
127     m_normal(m, r) /* color a ray which hit something normal */
128     register OBJREC *m;
129     register RAY *r;
130     {
131     NORMDAT nd;
132 greg 1.1 double dtmp;
133     COLOR ctmp;
134     register int i;
135    
136     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
137     objerror(m, USER, "bad # arguments");
138     /* easy shadow test */
139     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
140     return;
141 greg 1.3 nd.mp = m;
142     nd.pr = r;
143 greg 1.1 /* get material color */
144 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
145 greg 1.1 m->oargs.farg[1],
146     m->oargs.farg[2]);
147     /* get roughness */
148 greg 1.3 nd.alpha2 = m->oargs.farg[4];
149     nd.alpha2 *= 2.0 * nd.alpha2;
150 greg 1.1 /* reorient if necessary */
151     if (r->rod < 0.0)
152     flipsurface(r);
153     /* get modifiers */
154     raytexture(r, m->omod);
155 greg 1.3 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
156     multcolor(nd.mcolor, r->pcol); /* modify material color */
157 greg 1.5 r->rt = r->rot; /* default ray length */
158 greg 1.1 /* get specular component */
159 greg 1.3 nd.rspec = m->oargs.farg[3];
160 greg 1.1
161 greg 1.3 if (nd.rspec > FTINY) { /* has specular component */
162 greg 1.1 /* compute specular color */
163     if (m->otype == MAT_METAL)
164 greg 1.3 copycolor(nd.scolor, nd.mcolor);
165 greg 1.1 else
166 greg 1.3 setcolor(nd.scolor, 1.0, 1.0, 1.0);
167     scalecolor(nd.scolor, nd.rspec);
168 greg 1.1 /* improved model */
169 greg 1.3 dtmp = exp(-BSPEC(m)*nd.pdot);
170 greg 1.1 for (i = 0; i < 3; i++)
171 greg 1.3 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
172     nd.rspec += (1.0-nd.rspec)*dtmp;
173 greg 1.1 /* compute reflected ray */
174     for (i = 0; i < 3; i++)
175 greg 1.3 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
176 greg 1.1
177 greg 1.3 if (nd.alpha2 <= FTINY && !(r->crtype & SHADOW)) {
178     RAY lr;
179     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
180     VCOPY(lr.rdir, nd.vrefl);
181 greg 1.1 rayvalue(&lr);
182 greg 1.3 multcolor(lr.rcol, nd.scolor);
183 greg 1.1 addcolor(r->rcol, lr.rcol);
184 greg 1.5 if (nd.rspec > 0.5 && m->omod == OVOID)
185     r->rt = r->rot + lr.rt;
186 greg 1.1 }
187 greg 1.3 }
188 greg 1.1 }
189 greg 1.3 /* compute transmission */
190 greg 1.1 if (m->otype == MAT_TRANS) {
191 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
192     nd.tspec = nd.trans * m->oargs.farg[6];
193     nd.tdiff = nd.trans - nd.tspec;
194 greg 1.1 } else
195 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
196 greg 1.1 /* transmitted ray */
197 greg 1.3 if (nd.tspec > FTINY && nd.alpha2 <= FTINY) {
198     RAY lr;
199     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
200 greg 1.1 VCOPY(lr.rdir, r->rdir);
201     rayvalue(&lr);
202 greg 1.3 scalecolor(lr.rcol, nd.tspec);
203 greg 1.1 addcolor(r->rcol, lr.rcol);
204 greg 1.5 if (nd.tspec > .5)
205     r->rt = r->rot + lr.rt;
206 greg 1.1 }
207 greg 1.3 }
208 greg 1.1 if (r->crtype & SHADOW) /* the rest is shadow */
209     return;
210     /* diffuse reflection */
211 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
212 greg 1.1
213 greg 1.3 if (nd.rdiff <= FTINY && nd.tdiff <= FTINY && nd.alpha2 <= FTINY)
214 greg 1.1 return; /* purely specular */
215    
216 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
217 greg 1.2 ambient(ctmp, r);
218 greg 1.3 if (nd.alpha2 <= FTINY)
219     scalecolor(ctmp, nd.rdiff);
220 greg 1.2 else
221 greg 1.3 scalecolor(ctmp, 1.0-nd.trans);
222     multcolor(ctmp, nd.mcolor); /* modified by material color */
223 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
224     }
225 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
226 greg 1.1 flipsurface(r);
227 greg 1.2 ambient(ctmp, r);
228 greg 1.3 if (nd.alpha2 <= FTINY)
229     scalecolor(ctmp, nd.tdiff);
230 greg 1.2 else
231 greg 1.3 scalecolor(ctmp, nd.trans);
232     multcolor(ctmp, nd.mcolor);
233 greg 1.1 addcolor(r->rcol, ctmp);
234     flipsurface(r);
235     }
236 greg 1.3 /* add direct component */
237     direct(r, dirnorm, &nd);
238 greg 1.1 }