ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/normal.c
Revision: 1.3
Committed: Wed Jun 7 08:35:14 1989 UTC (34 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.2: +131 -119 lines
Log Message:
Efficient approximation to direct component with many sources
Glow type changed
Spot type eliminated

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1986 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * normal.c - shading function for normal materials.
9     *
10     * 8/19/85
11     * 12/19/85 - added stuff for metals.
12     * 6/26/87 - improved specular model.
13     * 9/28/87 - added model for translucent materials.
14     */
15    
16     #include "ray.h"
17    
18     #include "otypes.h"
19    
20     /*
21     * This routine uses portions of the reflection
22     * model described by Cook and Torrance.
23     * The computation of specular components has been simplified by
24     * numerous approximations and ommisions to improve speed.
25     * We orient the surface towards the incoming ray, so a single
26     * surface can be used to represent an infinitely thin object.
27     *
28     * Arguments for MAT_PLASTIC and MAT_METAL are:
29     * red grn blu specular-frac. facet-slope
30     *
31     * Arguments for MAT_TRANS are:
32     * red grn blu rspec rough trans tspec
33     */
34    
35     #define BSPEC(m) (6.0) /* specularity parameter b */
36    
37 greg 1.3 extern double exp();
38 greg 1.1
39 greg 1.3 typedef struct {
40     OBJREC *mp; /* material pointer */
41     RAY *pr; /* intersected ray */
42 greg 1.1 COLOR mcolor; /* color of this material */
43     COLOR scolor; /* color of specular component */
44     FVECT vrefl; /* vector in direction of reflected ray */
45     double alpha2; /* roughness squared times 2 */
46     double rdiff, rspec; /* reflected specular, diffuse */
47     double trans; /* transmissivity */
48     double tdiff, tspec; /* transmitted specular, diffuse */
49     FVECT pnorm; /* perturbed surface normal */
50     double pdot; /* perturbed dot product */
51 greg 1.3 } NORMDAT; /* normal material data */
52    
53    
54     dirnorm(cval, np, ldir, omega) /* compute source contribution */
55     COLOR cval; /* returned coefficient */
56     register NORMDAT *np; /* material data */
57     FVECT ldir; /* light source direction */
58     double omega; /* light source size */
59     {
60 greg 1.1 double ldot;
61 greg 1.3 double dtmp;
62     COLOR ctmp;
63    
64     setcolor(cval, 0.0, 0.0, 0.0);
65    
66     ldot = DOT(np->pnorm, ldir);
67    
68     if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
69     return; /* wrong side */
70    
71     if (ldot > FTINY && np->rdiff > FTINY) {
72     /*
73     * Compute and add diffuse component to returned color.
74     * The diffuse component will always be modified by the
75     * color of the material.
76     */
77     copycolor(ctmp, np->mcolor);
78     dtmp = ldot * omega * np->rdiff / PI;
79     scalecolor(ctmp, dtmp);
80     addcolor(cval, ctmp);
81     }
82     if (ldot > FTINY && np->rspec > FTINY && np->alpha2 > FTINY) {
83     /*
84     * Compute specular reflection coefficient using
85     * gaussian distribution model.
86     */
87     /* roughness + source */
88     dtmp = np->alpha2 + omega/(2.0*PI);
89     /* gaussian */
90     dtmp = exp((DOT(np->vrefl,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
91     /* worth using? */
92     if (dtmp > FTINY) {
93     copycolor(ctmp, np->scolor);
94     dtmp *= omega;
95     scalecolor(ctmp, dtmp);
96     addcolor(cval, ctmp);
97     }
98     }
99     if (ldot < -FTINY && np->tdiff > FTINY) {
100     /*
101     * Compute diffuse transmission.
102     */
103     copycolor(ctmp, np->mcolor);
104     dtmp = -ldot * omega * np->tdiff / PI;
105     scalecolor(ctmp, dtmp);
106     addcolor(cval, ctmp);
107     }
108     if (ldot < -FTINY && np->tspec > FTINY && np->alpha2 > FTINY) {
109     /*
110     * Compute specular transmission.
111     */
112     /* roughness + source */
113     dtmp = np->alpha2 + omega/(2.0*PI);
114     /* gaussian */
115     dtmp = exp((DOT(np->pr->rdir,ldir)-1.)/dtmp)/(2.*PI)/dtmp;
116     /* worth using? */
117     if (dtmp > FTINY) {
118     copycolor(ctmp, np->mcolor);
119     dtmp *= np->tspec * omega;
120     scalecolor(ctmp, dtmp);
121     addcolor(cval, ctmp);
122     }
123     }
124     }
125    
126    
127     m_normal(m, r) /* color a ray which hit something normal */
128     register OBJREC *m;
129     register RAY *r;
130     {
131     NORMDAT nd;
132     double ldot;
133 greg 1.1 double omega;
134     double dtmp;
135     COLOR ctmp;
136     register int i;
137    
138     if (m->oargs.nfargs != (m->otype == MAT_TRANS ? 7 : 5))
139     objerror(m, USER, "bad # arguments");
140     /* easy shadow test */
141     if (r->crtype & SHADOW && m->otype != MAT_TRANS)
142     return;
143 greg 1.3 nd.mp = m;
144     nd.pr = r;
145 greg 1.1 /* get material color */
146 greg 1.3 setcolor(nd.mcolor, m->oargs.farg[0],
147 greg 1.1 m->oargs.farg[1],
148     m->oargs.farg[2]);
149     /* get roughness */
150 greg 1.3 nd.alpha2 = m->oargs.farg[4];
151     nd.alpha2 *= 2.0 * nd.alpha2;
152 greg 1.1 /* reorient if necessary */
153     if (r->rod < 0.0)
154     flipsurface(r);
155     /* get modifiers */
156     raytexture(r, m->omod);
157 greg 1.3 nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
158     multcolor(nd.mcolor, r->pcol); /* modify material color */
159 greg 1.1 /* get specular component */
160 greg 1.3 nd.rspec = m->oargs.farg[3];
161 greg 1.1
162 greg 1.3 if (nd.rspec > FTINY) { /* has specular component */
163 greg 1.1 /* compute specular color */
164     if (m->otype == MAT_METAL)
165 greg 1.3 copycolor(nd.scolor, nd.mcolor);
166 greg 1.1 else
167 greg 1.3 setcolor(nd.scolor, 1.0, 1.0, 1.0);
168     scalecolor(nd.scolor, nd.rspec);
169 greg 1.1 /* improved model */
170 greg 1.3 dtmp = exp(-BSPEC(m)*nd.pdot);
171 greg 1.1 for (i = 0; i < 3; i++)
172 greg 1.3 colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
173     nd.rspec += (1.0-nd.rspec)*dtmp;
174 greg 1.1 /* compute reflected ray */
175     for (i = 0; i < 3; i++)
176 greg 1.3 nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
177 greg 1.1
178 greg 1.3 if (nd.alpha2 <= FTINY && !(r->crtype & SHADOW)) {
179     RAY lr;
180     if (rayorigin(&lr, r, REFLECTED, nd.rspec) == 0) {
181     VCOPY(lr.rdir, nd.vrefl);
182 greg 1.1 rayvalue(&lr);
183 greg 1.3 multcolor(lr.rcol, nd.scolor);
184 greg 1.1 addcolor(r->rcol, lr.rcol);
185     }
186 greg 1.3 }
187 greg 1.1 }
188 greg 1.3 /* compute transmission */
189 greg 1.1 if (m->otype == MAT_TRANS) {
190 greg 1.3 nd.trans = m->oargs.farg[5]*(1.0 - nd.rspec);
191     nd.tspec = nd.trans * m->oargs.farg[6];
192     nd.tdiff = nd.trans - nd.tspec;
193 greg 1.1 } else
194 greg 1.3 nd.tdiff = nd.tspec = nd.trans = 0.0;
195 greg 1.1 /* transmitted ray */
196 greg 1.3 if (nd.tspec > FTINY && nd.alpha2 <= FTINY) {
197     RAY lr;
198     if (rayorigin(&lr, r, TRANS, nd.tspec) == 0) {
199 greg 1.1 VCOPY(lr.rdir, r->rdir);
200     rayvalue(&lr);
201 greg 1.3 scalecolor(lr.rcol, nd.tspec);
202 greg 1.1 addcolor(r->rcol, lr.rcol);
203     }
204 greg 1.3 }
205 greg 1.1 if (r->crtype & SHADOW) /* the rest is shadow */
206     return;
207     /* diffuse reflection */
208 greg 1.3 nd.rdiff = 1.0 - nd.trans - nd.rspec;
209 greg 1.1
210 greg 1.3 if (nd.rdiff <= FTINY && nd.tdiff <= FTINY && nd.alpha2 <= FTINY)
211 greg 1.1 return; /* purely specular */
212    
213 greg 1.3 if (nd.rdiff > FTINY) { /* ambient from this side */
214 greg 1.2 ambient(ctmp, r);
215 greg 1.3 if (nd.alpha2 <= FTINY)
216     scalecolor(ctmp, nd.rdiff);
217 greg 1.2 else
218 greg 1.3 scalecolor(ctmp, 1.0-nd.trans);
219     multcolor(ctmp, nd.mcolor); /* modified by material color */
220 greg 1.2 addcolor(r->rcol, ctmp); /* add to returned color */
221     }
222 greg 1.3 if (nd.tdiff > FTINY) { /* ambient from other side */
223 greg 1.1 flipsurface(r);
224 greg 1.2 ambient(ctmp, r);
225 greg 1.3 if (nd.alpha2 <= FTINY)
226     scalecolor(ctmp, nd.tdiff);
227 greg 1.2 else
228 greg 1.3 scalecolor(ctmp, nd.trans);
229     multcolor(ctmp, nd.mcolor);
230 greg 1.1 addcolor(r->rcol, ctmp);
231     flipsurface(r);
232     }
233 greg 1.3 /* add direct component */
234     direct(r, dirnorm, &nd);
235 greg 1.1 }