1 |
– |
/* Copyright (c) 1988 Regents of the University of California */ |
2 |
– |
|
1 |
|
#ifndef lint |
2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
2 |
> |
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
6 |
– |
|
4 |
|
/* |
5 |
|
* noise3.c - noise functions for random textures. |
6 |
|
* |
7 |
< |
* Credit for the smooth algorithm goes to Ken Perlin. |
8 |
< |
* (ref. SIGGRAPH Vol 19, No 3, pp 287-96) |
9 |
< |
* |
13 |
< |
* 4/15/86 |
14 |
< |
* 5/19/88 Added fractal noise function |
7 |
> |
* Credit for the smooth algorithm goes to Ken Perlin, and code |
8 |
> |
* translation/implementation to Rahul Narain. |
9 |
> |
* (ref. Improving Noise, Computer Graphics; Vol. 35 No. 3., 2002) |
10 |
|
*/ |
11 |
|
|
12 |
+ |
#include "copyright.h" |
13 |
|
|
14 |
< |
#define A 0 |
15 |
< |
#define B 1 |
20 |
< |
#define C 2 |
21 |
< |
#define D 3 |
14 |
> |
#include "ray.h" |
15 |
> |
#include "func.h" |
16 |
|
|
17 |
< |
#define rand3a(x,y,z) frand(67*(x)+59*(y)+71*(z)) |
18 |
< |
#define rand3b(x,y,z) frand(73*(x)+79*(y)+83*(z)) |
25 |
< |
#define rand3c(x,y,z) frand(89*(x)+97*(y)+101*(z)) |
26 |
< |
#define rand3d(x,y,z) frand(103*(x)+107*(y)+109*(z)) |
17 |
> |
static char noise_name[4][8] = {"noise3x", "noise3y", "noise3z", "noise3"}; |
18 |
> |
static char fnoise_name[] = "fnoise3"; |
19 |
|
|
20 |
< |
#define hermite(p0,p1,r0,r1,t) ( p0*((2.0*t-3.0)*t*t+1.0) + \ |
29 |
< |
p1*(-2.0*t+3.0)*t*t + \ |
30 |
< |
r0*((t-2.0)*t+1.0)*t + \ |
31 |
< |
r1*(t-1.0)*t*t ) |
20 |
> |
#define EPSILON .0005 /* error allowed in fractal */ |
21 |
|
|
33 |
– |
double *noise3(), noise3coef(), argument(), frand(); |
34 |
– |
|
35 |
– |
static long xlim[3][2]; |
36 |
– |
static double xarg[3]; |
37 |
– |
|
38 |
– |
#define EPSILON .0001 /* error allowed in fractal */ |
39 |
– |
|
22 |
|
#define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z)) |
23 |
|
|
24 |
< |
double fnoise3(); |
24 |
> |
static double l_noise3(char *nam); |
25 |
> |
static double noise3(double xnew[3], int i); |
26 |
> |
static double noise3partial(double f3, double x[3], int i); |
27 |
> |
static double perlin_noise (double x, double y, double z); |
28 |
> |
static double frand(long s); |
29 |
> |
static double fnoise3(double x[3]); |
30 |
|
|
31 |
|
|
45 |
– |
double |
46 |
– |
l_noise3() /* compute 3-dimensional noise function */ |
47 |
– |
{ |
48 |
– |
return(noise3coef(D)); |
49 |
– |
} |
50 |
– |
|
51 |
– |
|
52 |
– |
double |
53 |
– |
l_noise3a() /* compute x slope of noise function */ |
54 |
– |
{ |
55 |
– |
return(noise3coef(A)); |
56 |
– |
} |
57 |
– |
|
58 |
– |
|
59 |
– |
double |
60 |
– |
l_noise3b() /* compute y slope of noise function */ |
61 |
– |
{ |
62 |
– |
return(noise3coef(B)); |
63 |
– |
} |
64 |
– |
|
65 |
– |
|
66 |
– |
double |
67 |
– |
l_noise3c() /* compute z slope of noise function */ |
68 |
– |
{ |
69 |
– |
return(noise3coef(C)); |
70 |
– |
} |
71 |
– |
|
72 |
– |
|
73 |
– |
double |
74 |
– |
l_fnoise3() /* compute fractal noise function */ |
75 |
– |
{ |
76 |
– |
double x[3]; |
77 |
– |
|
78 |
– |
x[0] = argument(1); |
79 |
– |
x[1] = argument(2); |
80 |
– |
x[2] = argument(3); |
81 |
– |
|
82 |
– |
return(fnoise3(x)); |
83 |
– |
} |
84 |
– |
|
85 |
– |
|
32 |
|
static double |
33 |
< |
noise3coef(coef) /* return coefficient of noise function */ |
34 |
< |
int coef; |
33 |
> |
l_noise3( /* compute a noise function */ |
34 |
> |
char *nam |
35 |
> |
) |
36 |
|
{ |
37 |
+ |
int i; |
38 |
|
double x[3]; |
39 |
< |
|
39 |
> |
/* get point */ |
40 |
|
x[0] = argument(1); |
41 |
|
x[1] = argument(2); |
42 |
|
x[2] = argument(3); |
43 |
< |
|
44 |
< |
return(noise3(x)[coef]); |
43 |
> |
/* make appropriate call */ |
44 |
> |
if (nam == fnoise_name) |
45 |
> |
return(fnoise3(x)); |
46 |
> |
i = 4; |
47 |
> |
while (i--) |
48 |
> |
if (nam == noise_name[i]) |
49 |
> |
return(noise3(x,i)); |
50 |
> |
eputs(nam); |
51 |
> |
eputs(": called l_noise3!\n"); |
52 |
> |
quit(1); |
53 |
> |
return 1; /* pro forma return */ |
54 |
|
} |
55 |
|
|
56 |
|
|
57 |
< |
double * |
58 |
< |
noise3(xnew) /* compute the noise function */ |
102 |
< |
register double xnew[3]; |
57 |
> |
void |
58 |
> |
setnoisefuncs(void) /* add noise functions to library */ |
59 |
|
{ |
60 |
< |
extern double floor(); |
105 |
< |
static double x[3] = {-100000.0, -100000.0, -100000.0}; |
106 |
< |
static double f[4]; |
60 |
> |
int i; |
61 |
|
|
62 |
< |
if (x[0]==xnew[0] && x[1]==xnew[1] && x[2]==xnew[2]) |
63 |
< |
return(f); |
64 |
< |
x[0] = xnew[0]; x[1] = xnew[1]; x[2] = xnew[2]; |
65 |
< |
xlim[0][0] = floor(x[0]); xlim[0][1] = xlim[0][0] + 1; |
112 |
< |
xlim[1][0] = floor(x[1]); xlim[1][1] = xlim[1][0] + 1; |
113 |
< |
xlim[2][0] = floor(x[2]); xlim[2][1] = xlim[2][0] + 1; |
114 |
< |
xarg[0] = x[0] - xlim[0][0]; |
115 |
< |
xarg[1] = x[1] - xlim[1][0]; |
116 |
< |
xarg[2] = x[2] - xlim[2][0]; |
117 |
< |
interpolate(f, 0, 3); |
118 |
< |
return(f); |
62 |
> |
funset(fnoise_name, 3, ':', l_noise3); |
63 |
> |
i = 4; |
64 |
> |
while (i--) |
65 |
> |
funset(noise_name[i], 3, ':', l_noise3); |
66 |
|
} |
67 |
|
|
68 |
|
|
69 |
< |
static |
70 |
< |
interpolate(f, i, n) |
71 |
< |
double f[4]; |
72 |
< |
register int i, n; |
69 |
> |
static double |
70 |
> |
frand( /* get random number from seed */ |
71 |
> |
long s |
72 |
> |
) |
73 |
|
{ |
127 |
– |
double f0[4], f1[4]; |
128 |
– |
|
129 |
– |
if (n == 0) { |
130 |
– |
f[A] = rand3a(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
131 |
– |
f[B] = rand3b(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
132 |
– |
f[C] = rand3c(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
133 |
– |
f[D] = rand3d(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
134 |
– |
} else { |
135 |
– |
n--; |
136 |
– |
interpolate(f0, i, n); |
137 |
– |
interpolate(f1, i | 1<<n, n); |
138 |
– |
f[A] = (1.0-xarg[n])*f0[A] + xarg[n]*f1[A]; |
139 |
– |
f[B] = (1.0-xarg[n])*f0[B] + xarg[n]*f1[B]; |
140 |
– |
f[C] = (1.0-xarg[n])*f0[C] + xarg[n]*f1[C]; |
141 |
– |
f[D] = hermite(f0[D], f1[D], f0[n], f1[n], xarg[n]); |
142 |
– |
} |
143 |
– |
} |
144 |
– |
|
145 |
– |
|
146 |
– |
double |
147 |
– |
frand(s) /* get random number from seed */ |
148 |
– |
register long s; |
149 |
– |
{ |
74 |
|
s = s<<13 ^ s; |
75 |
|
return(1.0-((s*(s*s*15731+789221)+1376312589)&0x7fffffff)/1073741824.0); |
76 |
|
} |
77 |
|
|
78 |
|
|
79 |
< |
double |
80 |
< |
l_hermite() /* library call for hermite interpolation */ |
79 |
> |
static double |
80 |
> |
fnoise3( /* compute fractal noise function */ |
81 |
> |
double x[3] |
82 |
> |
) |
83 |
|
{ |
84 |
< |
double t; |
159 |
< |
|
160 |
< |
t = argument(5); |
161 |
< |
return( hermite(argument(1), argument(2), |
162 |
< |
argument(3), argument(4), t) ); |
163 |
< |
} |
164 |
< |
|
165 |
< |
|
166 |
< |
double |
167 |
< |
fnoise3(p) /* compute fractal noise function */ |
168 |
< |
double p[3]; |
169 |
< |
{ |
170 |
< |
double floor(); |
171 |
< |
long t[3], v[3], beg[3], s; |
84 |
> |
long t[3], v[3], beg[3]; |
85 |
|
double fval[8], fc; |
86 |
|
int branch; |
87 |
< |
register int i, j; |
87 |
> |
long s; |
88 |
> |
int i, j; |
89 |
|
/* get starting cube */ |
90 |
|
s = (long)(1.0/EPSILON); |
91 |
|
for (i = 0; i < 3; i++) { |
92 |
< |
t[i] = s*p[i]; |
93 |
< |
beg[i] = s*floor(p[i]); |
92 |
> |
t[i] = s*x[i]; |
93 |
> |
beg[i] = s*floor(x[i]); |
94 |
|
} |
95 |
|
for (j = 0; j < 8; j++) { |
96 |
|
for (i = 0; i < 3; i++) { |
102 |
|
} |
103 |
|
/* compute fractal */ |
104 |
|
for ( ; ; ) { |
105 |
< |
s >>= 1; |
105 |
> |
fc = 0.0; |
106 |
> |
for (j = 0; j < 8; j++) |
107 |
> |
fc += fval[j]; |
108 |
> |
fc *= 0.125; |
109 |
> |
if ((s >>= 1) == 0) |
110 |
> |
return(fc); /* close enough */ |
111 |
|
branch = 0; |
112 |
|
for (i = 0; i < 3; i++) { /* do center */ |
113 |
|
v[i] = beg[i] + s; |
115 |
|
branch |= 1<<i; |
116 |
|
} |
117 |
|
} |
199 |
– |
fc = 0.0; |
200 |
– |
for (j = 0; j < 8; j++) |
201 |
– |
fc += fval[j]; |
202 |
– |
fc *= 0.125; |
203 |
– |
if (s < 1) |
204 |
– |
return(fc); /* close enough */ |
118 |
|
fc += s*EPSILON*frand3(v[0],v[1],v[2]); |
119 |
|
fval[~branch & 7] = fc; |
120 |
|
for (i = 0; i < 3; i++) { /* do faces */ |
131 |
|
v[i] = beg[i] + s; |
132 |
|
} |
133 |
|
for (i = 0; i < 3; i++) { /* do edges */ |
134 |
< |
j = (i+1)%3; |
134 |
> |
if ((j = i+1) == 3) j = 0; |
135 |
|
if (branch & 1<<j) |
136 |
|
v[j] += s; |
137 |
|
else |
138 |
|
v[j] -= s; |
139 |
< |
j = (i+2)%3; |
139 |
> |
if (++j == 3) j = 0; |
140 |
|
if (branch & 1<<j) |
141 |
|
v[j] += s; |
142 |
|
else |
145 |
|
fc += fval[branch | 1<<i]; |
146 |
|
fc = 0.5*fc + s*EPSILON*frand3(v[0],v[1],v[2]); |
147 |
|
fval[branch^1<<i] = fc; |
148 |
< |
j = (i+1)%3; |
148 |
> |
if ((j = i+1) == 3) j = 0; |
149 |
|
v[j] = beg[j] + s; |
150 |
< |
j = (i+2)%3; |
150 |
> |
if (++j == 3) j = 0; |
151 |
|
v[j] = beg[j] + s; |
152 |
|
} |
153 |
|
for (i = 0; i < 3; i++) /* new cube */ |
154 |
|
if (branch & 1<<i) |
155 |
|
beg[i] += s; |
156 |
|
} |
157 |
+ |
} |
158 |
+ |
|
159 |
+ |
|
160 |
+ |
static double |
161 |
+ |
noise3( /* compute the revised Perlin noise function */ |
162 |
+ |
double xnew[3], int i |
163 |
+ |
) |
164 |
+ |
{ |
165 |
+ |
static int gotV; |
166 |
+ |
static double x[3]; |
167 |
+ |
static double f[4]; |
168 |
+ |
|
169 |
+ |
if (!gotV || xnew[0] != x[0] || (xnew[1] != x[1]) | (xnew[2] != x[2])) { |
170 |
+ |
f[3] = perlin_noise(x[0]=xnew[0], x[1]=xnew[1], x[2]=xnew[2]); |
171 |
+ |
gotV = 0x8; |
172 |
+ |
} |
173 |
+ |
if (!(gotV>>i & 1)) { |
174 |
+ |
f[i] = noise3partial(f[3], x, i); |
175 |
+ |
gotV |= 1<<i; |
176 |
+ |
} |
177 |
+ |
return(f[i]); |
178 |
+ |
} |
179 |
+ |
|
180 |
+ |
static double |
181 |
+ |
noise3partial( /* compute partial derivative for ith coordinate */ |
182 |
+ |
double f3, double x[3], int i |
183 |
+ |
) |
184 |
+ |
{ |
185 |
+ |
double fc; |
186 |
+ |
|
187 |
+ |
switch (i) { |
188 |
+ |
case 0: |
189 |
+ |
fc = perlin_noise(x[0]-EPSILON, x[1], x[2]); |
190 |
+ |
break; |
191 |
+ |
case 1: |
192 |
+ |
fc = perlin_noise(x[0], x[1]-EPSILON, x[2]); |
193 |
+ |
break; |
194 |
+ |
case 2: |
195 |
+ |
fc = perlin_noise(x[0], x[1], x[2]-EPSILON); |
196 |
+ |
break; |
197 |
+ |
default: |
198 |
+ |
return(.0); |
199 |
+ |
} |
200 |
+ |
return((f3 - fc)/EPSILON); |
201 |
+ |
} |
202 |
+ |
|
203 |
+ |
#define fade(t) ((t)*(t)*(t)*((t)*((t)*6. - 15.) + 10.)) |
204 |
+ |
|
205 |
+ |
static double lerp(double t, double a, double b) {return a + t*(b - a);} |
206 |
+ |
|
207 |
+ |
static double |
208 |
+ |
grad(int hash, double x, double y, double z) |
209 |
+ |
{ |
210 |
+ |
int h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE |
211 |
+ |
double u = h<8 ? x : y, // INTO 12 GRADIENT DIRECTIONS. |
212 |
+ |
v = h<4 ? y : h==12|h==14 ? x : z; |
213 |
+ |
return (!(h&1) ? u : -u) + (!(h&2) ? v : -v); |
214 |
+ |
} |
215 |
+ |
|
216 |
+ |
static const int permutation[256] = {151,160,137,91,90,15, |
217 |
+ |
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, |
218 |
+ |
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, |
219 |
+ |
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, |
220 |
+ |
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, |
221 |
+ |
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, |
222 |
+ |
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, |
223 |
+ |
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, |
224 |
+ |
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, |
225 |
+ |
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, |
226 |
+ |
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, |
227 |
+ |
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, |
228 |
+ |
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 |
229 |
+ |
}; |
230 |
+ |
|
231 |
+ |
#define p(i) permutation[(i)&0xff] |
232 |
+ |
|
233 |
+ |
static double |
234 |
+ |
perlin_noise(double x, double y, double z) |
235 |
+ |
{ |
236 |
+ |
int X, Y, Z; |
237 |
+ |
double u, v, w; |
238 |
+ |
int A, AA, AB, B, BA, BB; |
239 |
+ |
|
240 |
+ |
X = (int)x-(x<0); // FIND UNIT CUBE THAT |
241 |
+ |
Y = (int)y-(y<0); // CONTAINS POINT. |
242 |
+ |
Z = (int)z-(z<0); |
243 |
+ |
x -= (double)X; // FIND RELATIVE X,Y,Z |
244 |
+ |
y -= (double)Y; // OF POINT IN CUBE. |
245 |
+ |
z -= (double)Z; |
246 |
+ |
X &= 0xff; Y &= 0xff; Z &= 0xff; |
247 |
+ |
|
248 |
+ |
u = fade(x); // COMPUTE FADE CURVES |
249 |
+ |
v = fade(y); // FOR EACH OF X,Y,Z. |
250 |
+ |
w = fade(z); |
251 |
+ |
|
252 |
+ |
A = p(X )+Y; AA = p(A)+Z; AB = p(A+1)+Z; // HASH COORDINATES OF |
253 |
+ |
B = p(X+1)+Y; BA = p(B)+Z; BB = p(B+1)+Z; // THE 8 CUBE CORNERS, |
254 |
+ |
|
255 |
+ |
return lerp(w, lerp(v, lerp(u, grad(p(AA ), x , y , z ), // AND ADD |
256 |
+ |
grad(p(BA ), x-1, y , z )), // BLENDED |
257 |
+ |
lerp(u, grad(p(AB ), x , y-1, z ), // RESULTS |
258 |
+ |
grad(p(BB ), x-1, y-1, z ))),// FROM 8 |
259 |
+ |
lerp(v, lerp(u, grad(p(AA+1), x , y , z-1), // CORNERS |
260 |
+ |
grad(p(BA+1), x-1, y , z-1)), // OF CUBE |
261 |
+ |
lerp(u, grad(p(AB+1), x , y-1, z-1), |
262 |
+ |
grad(p(BB+1), x-1, y-1, z-1)))); |
263 |
|
} |