--- ray/src/rt/noise3.c 1989/03/03 12:25:34 1.2 +++ ray/src/rt/noise3.c 2004/03/30 16:13:01 2.9 @@ -1,20 +1,20 @@ -/* Copyright (c) 1988 Regents of the University of California */ - #ifndef lint -static char SCCSid[] = "$SunId$ LBL"; +static const char RCSid[] = "$Id: noise3.c,v 2.9 2004/03/30 16:13:01 schorsch Exp $"; #endif - /* * noise3.c - noise functions for random textures. * * Credit for the smooth algorithm goes to Ken Perlin. * (ref. SIGGRAPH Vol 19, No 3, pp 287-96) - * - * 4/15/86 - * 5/19/88 Added fractal noise function */ +#include "copyright.h" +#include + +#include "calcomp.h" +#include "func.h" + #define A 0 #define B 1 #define C 2 @@ -25,83 +25,92 @@ static char SCCSid[] = "$SunId$ LBL"; #define rand3c(x,y,z) frand(89*(x)+97*(y)+101*(z)) #define rand3d(x,y,z) frand(103*(x)+107*(y)+109*(z)) -#define hermite(p0,p1,r0,r1,t) ( p0*((2.0*t-3.0)*t*t+1.0) + \ - p1*(-2.0*t+3.0)*t*t + \ - r0*((t-2.0)*t+1.0)*t + \ - r1*(t-1.0)*t*t ) +#define hpoly1(t) ((2.0*t-3.0)*t*t+1.0) +#define hpoly2(t) (-2.0*t+3.0)*t*t +#define hpoly3(t) ((t-2.0)*t+1.0)*t +#define hpoly4(t) (t-1.0)*t*t -double *noise3(), noise3coef(), argument(), frand(); +#define hermite(p0,p1,r0,r1,t) ( p0*hpoly1(t) + \ + p1*hpoly2(t) + \ + r0*hpoly3(t) + \ + r1*hpoly4(t) ) +static char noise_name[4][8] = {"noise3x", "noise3y", "noise3z", "noise3"}; +static char fnoise_name[] = "fnoise3"; +static char hermite_name[] = "hermite"; + +//double *noise3(), fnoise3(), frand(); +//static interpolate(); + static long xlim[3][2]; static double xarg[3]; -#define EPSILON .0001 /* error allowed in fractal */ +#define EPSILON .001 /* error allowed in fractal */ -#define frand3(x,y,z) frand((long)((12.38*(x)-22.30*(y)-42.63*(z))/EPSILON)) +#define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z)) -double fnoise3(); +static double l_noise3(char *nam); +static double l_hermite(char *nm); +static double * noise3(double xnew[3]); +static void interpolate(double f[4], int i, int n); +static double frand(long s); +static double fnoise3(double p[3]); -double -l_noise3() /* compute 3-dimensional noise function */ +static double +l_noise3( /* compute a noise function */ + register char *nam +) { - return(noise3coef(D)); -} - - -double -l_noise3a() /* compute x slope of noise function */ -{ - return(noise3coef(A)); -} - - -double -l_noise3b() /* compute y slope of noise function */ -{ - return(noise3coef(B)); -} - - -double -l_noise3c() /* compute z slope of noise function */ -{ - return(noise3coef(C)); -} - - -double -l_fnoise3() /* compute fractal noise function */ -{ + register int i; double x[3]; - + /* get point */ x[0] = argument(1); x[1] = argument(2); x[2] = argument(3); - - return(fnoise3(x)); + /* make appropriate call */ + if (nam == fnoise_name) + return(fnoise3(x)); + i = 4; + while (i--) + if (nam == noise_name[i]) + return(noise3(x)[i]); + eputs(nam); + eputs(": called l_noise3!\n"); + quit(1); + return 1; /* pro forma return */ } static double -noise3coef(coef) /* return coefficient of noise function */ -int coef; +l_hermite(char *nm) /* library call for hermite interpolation */ { - double x[3]; + double t; + + t = argument(5); + return( hermite(argument(1), argument(2), + argument(3), argument(4), t) ); +} - x[0] = argument(1); - x[1] = argument(2); - x[2] = argument(3); - return(noise3(x)[coef]); +extern void +setnoisefuncs(void) /* add noise functions to library */ +{ + register int i; + + funset(hermite_name, 5, ':', l_hermite); + funset(fnoise_name, 3, ':', l_noise3); + i = 4; + while (i--) + funset(noise_name[i], 3, ':', l_noise3); } -double * -noise3(xnew) /* compute the noise function */ -register double xnew[3]; +static double * +noise3( /* compute the noise function */ + register double xnew[3] +) { - extern double floor(); static double x[3] = {-100000.0, -100000.0, -100000.0}; static double f[4]; @@ -119,12 +128,14 @@ register double xnew[3]; } -static -interpolate(f, i, n) -double f[4]; -register int i, n; +static void +interpolate( + double f[4], + register int i, + register int n +) { - double f0[4], f1[4]; + double f0[4], f1[4], hp1, hp2; if (n == 0) { f[A] = rand3a(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); @@ -135,74 +146,66 @@ register int i, n; n--; interpolate(f0, i, n); interpolate(f1, i | 1<>= 1) == 0) + return(fc); /* close enough */ branch = 0; - closing = 0; for (i = 0; i < 3; i++) { /* do center */ v[i] = beg[i] + s; - if (p[i] > v[i]) { + if (t[i] > v[i]) { branch |= 1< EPSILON) - closing++; - } else if (v[i] - p[i] > EPSILON) - closing++; + } } - fc = 0.0; - for (j = 0; j < 8; j++) - fc += fval[j]; - fc = 0.125*fc + s*frand3(v[0],v[1],v[2]); - if (closing == 0) - return(fc); /* close enough */ + fc += s*EPSILON*frand3(v[0],v[1],v[2]); fval[~branch & 7] = fc; for (i = 0; i < 3; i++) { /* do faces */ if (branch & 1<