ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/noise3.c
Revision: 1.5
Committed: Fri May 24 14:23:33 1991 UTC (33 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.4: +36 -55 lines
Log Message:
changed noise3 initialization

File Contents

# Content
1 /* Copyright (c) 1988 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * noise3.c - noise functions for random textures.
9 *
10 * Credit for the smooth algorithm goes to Ken Perlin.
11 * (ref. SIGGRAPH Vol 19, No 3, pp 287-96)
12 *
13 * 4/15/86
14 * 5/19/88 Added fractal noise function
15 */
16
17
18 #define A 0
19 #define B 1
20 #define C 2
21 #define D 3
22
23 #define rand3a(x,y,z) frand(67*(x)+59*(y)+71*(z))
24 #define rand3b(x,y,z) frand(73*(x)+79*(y)+83*(z))
25 #define rand3c(x,y,z) frand(89*(x)+97*(y)+101*(z))
26 #define rand3d(x,y,z) frand(103*(x)+107*(y)+109*(z))
27
28 #define hermite(p0,p1,r0,r1,t) ( p0*((2.0*t-3.0)*t*t+1.0) + \
29 p1*(-2.0*t+3.0)*t*t + \
30 r0*((t-2.0)*t+1.0)*t + \
31 r1*(t-1.0)*t*t )
32
33 static char *noise_name[4] = {"noise3a", "noise3b", "noise3c", "noise3"};
34 static char fnoise_name[] = "fnoise3";
35 static char hermite_name[] = "hermite";
36
37 double *noise3(), fnoise3(), argument(), frand();
38
39 static long xlim[3][2];
40 static double xarg[3];
41
42 #define EPSILON .0001 /* error allowed in fractal */
43
44 #define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z))
45
46
47 static double
48 l_noise3(nam) /* compute a noise function */
49 register char *nam;
50 {
51 register int i;
52 double x[3];
53 /* get point */
54 x[0] = argument(1);
55 x[1] = argument(2);
56 x[2] = argument(3);
57 /* make appropriate call */
58 if (nam == fnoise_name)
59 return(fnoise3(x));
60 i = 4;
61 while (i--)
62 if (nam == noise_name[i])
63 return(noise3(x)[i]);
64 eputs("Bad call to l_noise3()!\n");
65 quit(1);
66 }
67
68
69 double
70 l_hermite() /* library call for hermite interpolation */
71 {
72 double t;
73
74 t = argument(5);
75 return( hermite(argument(1), argument(2),
76 argument(3), argument(4), t) );
77 }
78
79
80 setnoisefuncs() /* add noise functions to library */
81 {
82 register int i;
83
84 funset(hermite_name, 5, ':', l_hermite);
85 funset(fnoise_name, 3, ':', l_noise3);
86 i = 4;
87 while (i--)
88 funset(noise_name[i], 3, ':', l_noise3);
89 }
90
91
92 double *
93 noise3(xnew) /* compute the noise function */
94 register double xnew[3];
95 {
96 extern double floor();
97 static double x[3] = {-100000.0, -100000.0, -100000.0};
98 static double f[4];
99
100 if (x[0]==xnew[0] && x[1]==xnew[1] && x[2]==xnew[2])
101 return(f);
102 x[0] = xnew[0]; x[1] = xnew[1]; x[2] = xnew[2];
103 xlim[0][0] = floor(x[0]); xlim[0][1] = xlim[0][0] + 1;
104 xlim[1][0] = floor(x[1]); xlim[1][1] = xlim[1][0] + 1;
105 xlim[2][0] = floor(x[2]); xlim[2][1] = xlim[2][0] + 1;
106 xarg[0] = x[0] - xlim[0][0];
107 xarg[1] = x[1] - xlim[1][0];
108 xarg[2] = x[2] - xlim[2][0];
109 interpolate(f, 0, 3);
110 return(f);
111 }
112
113
114 static
115 interpolate(f, i, n)
116 double f[4];
117 register int i, n;
118 {
119 double f0[4], f1[4];
120
121 if (n == 0) {
122 f[A] = rand3a(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
123 f[B] = rand3b(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
124 f[C] = rand3c(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
125 f[D] = rand3d(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
126 } else {
127 n--;
128 interpolate(f0, i, n);
129 interpolate(f1, i | 1<<n, n);
130 f[A] = (1.0-xarg[n])*f0[A] + xarg[n]*f1[A];
131 f[B] = (1.0-xarg[n])*f0[B] + xarg[n]*f1[B];
132 f[C] = (1.0-xarg[n])*f0[C] + xarg[n]*f1[C];
133 f[D] = hermite(f0[D], f1[D], f0[n], f1[n], xarg[n]);
134 }
135 }
136
137
138 double
139 frand(s) /* get random number from seed */
140 register long s;
141 {
142 s = s<<13 ^ s;
143 return(1.0-((s*(s*s*15731+789221)+1376312589)&0x7fffffff)/1073741824.0);
144 }
145
146
147 double
148 fnoise3(p) /* compute fractal noise function */
149 double p[3];
150 {
151 double floor();
152 long t[3], v[3], beg[3];
153 double fval[8], fc;
154 int branch;
155 register long s;
156 register int i, j;
157 /* get starting cube */
158 s = (long)(1.0/EPSILON);
159 for (i = 0; i < 3; i++) {
160 t[i] = s*p[i];
161 beg[i] = s*floor(p[i]);
162 }
163 for (j = 0; j < 8; j++) {
164 for (i = 0; i < 3; i++) {
165 v[i] = beg[i];
166 if (j & 1<<i)
167 v[i] += s;
168 }
169 fval[j] = frand3(v[0],v[1],v[2]);
170 }
171 /* compute fractal */
172 for ( ; ; ) {
173 fc = 0.0;
174 for (j = 0; j < 8; j++)
175 fc += fval[j];
176 fc *= 0.125;
177 if ((s >>= 1) == 0)
178 return(fc); /* close enough */
179 branch = 0;
180 for (i = 0; i < 3; i++) { /* do center */
181 v[i] = beg[i] + s;
182 if (t[i] > v[i]) {
183 branch |= 1<<i;
184 }
185 }
186 fc += s*EPSILON*frand3(v[0],v[1],v[2]);
187 fval[~branch & 7] = fc;
188 for (i = 0; i < 3; i++) { /* do faces */
189 if (branch & 1<<i)
190 v[i] += s;
191 else
192 v[i] -= s;
193 fc = 0.0;
194 for (j = 0; j < 8; j++)
195 if (~(j^branch) & 1<<i)
196 fc += fval[j];
197 fc = 0.25*fc + s*EPSILON*frand3(v[0],v[1],v[2]);
198 fval[~(branch^1<<i) & 7] = fc;
199 v[i] = beg[i] + s;
200 }
201 for (i = 0; i < 3; i++) { /* do edges */
202 j = (i+1)%3;
203 if (branch & 1<<j)
204 v[j] += s;
205 else
206 v[j] -= s;
207 j = (i+2)%3;
208 if (branch & 1<<j)
209 v[j] += s;
210 else
211 v[j] -= s;
212 fc = fval[branch & ~(1<<i)];
213 fc += fval[branch | 1<<i];
214 fc = 0.5*fc + s*EPSILON*frand3(v[0],v[1],v[2]);
215 fval[branch^1<<i] = fc;
216 j = (i+1)%3;
217 v[j] = beg[j] + s;
218 j = (i+2)%3;
219 v[j] = beg[j] + s;
220 }
221 for (i = 0; i < 3; i++) /* new cube */
222 if (branch & 1<<i)
223 beg[i] += s;
224 }
225 }