1 |
greg |
1.1 |
/* Copyright (c) 1988 Regents of the University of California */ |
2 |
|
|
|
3 |
|
|
#ifndef lint |
4 |
|
|
static char SCCSid[] = "$SunId$ LBL"; |
5 |
|
|
#endif |
6 |
|
|
|
7 |
|
|
/* |
8 |
|
|
* noise3.c - noise functions for random textures. |
9 |
|
|
* |
10 |
|
|
* Credit for the smooth algorithm goes to Ken Perlin. |
11 |
|
|
* (ref. SIGGRAPH Vol 19, No 3, pp 287-96) |
12 |
|
|
* |
13 |
|
|
* 4/15/86 |
14 |
|
|
* 5/19/88 Added fractal noise function |
15 |
|
|
*/ |
16 |
|
|
|
17 |
|
|
|
18 |
|
|
#define A 0 |
19 |
|
|
#define B 1 |
20 |
|
|
#define C 2 |
21 |
|
|
#define D 3 |
22 |
|
|
|
23 |
|
|
#define rand3a(x,y,z) frand(67*(x)+59*(y)+71*(z)) |
24 |
|
|
#define rand3b(x,y,z) frand(73*(x)+79*(y)+83*(z)) |
25 |
|
|
#define rand3c(x,y,z) frand(89*(x)+97*(y)+101*(z)) |
26 |
|
|
#define rand3d(x,y,z) frand(103*(x)+107*(y)+109*(z)) |
27 |
|
|
|
28 |
greg |
1.7 |
#define hpoly1(t) ((2.0*t-3.0)*t*t+1.0) |
29 |
|
|
#define hpoly2(t) (-2.0*t+3.0)*t*t |
30 |
|
|
#define hpoly3(t) ((t-2.0)*t+1.0)*t |
31 |
|
|
#define hpoly4(t) (t-1.0)*t*t |
32 |
greg |
1.1 |
|
33 |
greg |
1.7 |
#define hermite(p0,p1,r0,r1,t) ( p0*hpoly1(t) + \ |
34 |
|
|
p1*hpoly2(t) + \ |
35 |
|
|
r0*hpoly3(t) + \ |
36 |
|
|
r1*hpoly4(t) ) |
37 |
|
|
|
38 |
greg |
1.6 |
static char noise_name[4][8] = {"noise3a", "noise3b", "noise3c", "noise3"}; |
39 |
greg |
1.5 |
static char fnoise_name[] = "fnoise3"; |
40 |
|
|
static char hermite_name[] = "hermite"; |
41 |
greg |
1.1 |
|
42 |
greg |
1.5 |
double *noise3(), fnoise3(), argument(), frand(); |
43 |
|
|
|
44 |
greg |
1.1 |
static long xlim[3][2]; |
45 |
|
|
static double xarg[3]; |
46 |
|
|
|
47 |
greg |
1.2 |
#define EPSILON .0001 /* error allowed in fractal */ |
48 |
greg |
1.1 |
|
49 |
greg |
1.3 |
#define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z)) |
50 |
greg |
1.1 |
|
51 |
|
|
|
52 |
greg |
1.5 |
static double |
53 |
|
|
l_noise3(nam) /* compute a noise function */ |
54 |
|
|
register char *nam; |
55 |
greg |
1.1 |
{ |
56 |
greg |
1.5 |
register int i; |
57 |
|
|
double x[3]; |
58 |
|
|
/* get point */ |
59 |
|
|
x[0] = argument(1); |
60 |
|
|
x[1] = argument(2); |
61 |
|
|
x[2] = argument(3); |
62 |
|
|
/* make appropriate call */ |
63 |
|
|
if (nam == fnoise_name) |
64 |
|
|
return(fnoise3(x)); |
65 |
|
|
i = 4; |
66 |
|
|
while (i--) |
67 |
|
|
if (nam == noise_name[i]) |
68 |
|
|
return(noise3(x)[i]); |
69 |
greg |
1.6 |
eputs(nam); |
70 |
|
|
eputs(": called l_noise3!\n"); |
71 |
greg |
1.5 |
quit(1); |
72 |
greg |
1.1 |
} |
73 |
|
|
|
74 |
|
|
|
75 |
|
|
double |
76 |
greg |
1.5 |
l_hermite() /* library call for hermite interpolation */ |
77 |
greg |
1.1 |
{ |
78 |
greg |
1.5 |
double t; |
79 |
|
|
|
80 |
|
|
t = argument(5); |
81 |
|
|
return( hermite(argument(1), argument(2), |
82 |
|
|
argument(3), argument(4), t) ); |
83 |
greg |
1.1 |
} |
84 |
|
|
|
85 |
|
|
|
86 |
greg |
1.5 |
setnoisefuncs() /* add noise functions to library */ |
87 |
greg |
1.1 |
{ |
88 |
greg |
1.5 |
register int i; |
89 |
greg |
1.1 |
|
90 |
greg |
1.5 |
funset(hermite_name, 5, ':', l_hermite); |
91 |
|
|
funset(fnoise_name, 3, ':', l_noise3); |
92 |
|
|
i = 4; |
93 |
|
|
while (i--) |
94 |
|
|
funset(noise_name[i], 3, ':', l_noise3); |
95 |
greg |
1.1 |
} |
96 |
|
|
|
97 |
|
|
|
98 |
|
|
double * |
99 |
|
|
noise3(xnew) /* compute the noise function */ |
100 |
|
|
register double xnew[3]; |
101 |
|
|
{ |
102 |
|
|
extern double floor(); |
103 |
|
|
static double x[3] = {-100000.0, -100000.0, -100000.0}; |
104 |
|
|
static double f[4]; |
105 |
|
|
|
106 |
|
|
if (x[0]==xnew[0] && x[1]==xnew[1] && x[2]==xnew[2]) |
107 |
|
|
return(f); |
108 |
|
|
x[0] = xnew[0]; x[1] = xnew[1]; x[2] = xnew[2]; |
109 |
|
|
xlim[0][0] = floor(x[0]); xlim[0][1] = xlim[0][0] + 1; |
110 |
|
|
xlim[1][0] = floor(x[1]); xlim[1][1] = xlim[1][0] + 1; |
111 |
|
|
xlim[2][0] = floor(x[2]); xlim[2][1] = xlim[2][0] + 1; |
112 |
|
|
xarg[0] = x[0] - xlim[0][0]; |
113 |
|
|
xarg[1] = x[1] - xlim[1][0]; |
114 |
|
|
xarg[2] = x[2] - xlim[2][0]; |
115 |
|
|
interpolate(f, 0, 3); |
116 |
|
|
return(f); |
117 |
|
|
} |
118 |
|
|
|
119 |
|
|
|
120 |
|
|
static |
121 |
|
|
interpolate(f, i, n) |
122 |
|
|
double f[4]; |
123 |
|
|
register int i, n; |
124 |
|
|
{ |
125 |
greg |
1.7 |
double f0[4], f1[4], hp1, hp2; |
126 |
greg |
1.1 |
|
127 |
|
|
if (n == 0) { |
128 |
|
|
f[A] = rand3a(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
129 |
|
|
f[B] = rand3b(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
130 |
|
|
f[C] = rand3c(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
131 |
|
|
f[D] = rand3d(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]); |
132 |
|
|
} else { |
133 |
|
|
n--; |
134 |
|
|
interpolate(f0, i, n); |
135 |
|
|
interpolate(f1, i | 1<<n, n); |
136 |
greg |
1.7 |
hp1 = hpoly1(xarg[n]); hp2 = hpoly2(xarg[n]); |
137 |
|
|
f[A] = f0[A]*hp1 + f1[A]*hp2; |
138 |
|
|
f[B] = f0[B]*hp1 + f1[B]*hp2; |
139 |
|
|
f[C] = f0[C]*hp1 + f1[C]*hp2; |
140 |
|
|
f[D] = f0[D]*hp1 + f1[D]*hp2 + |
141 |
|
|
f0[n]*hpoly3(xarg[n]) + f1[n]*hpoly4(xarg[n]); |
142 |
greg |
1.1 |
} |
143 |
|
|
} |
144 |
|
|
|
145 |
|
|
|
146 |
|
|
double |
147 |
|
|
frand(s) /* get random number from seed */ |
148 |
|
|
register long s; |
149 |
|
|
{ |
150 |
|
|
s = s<<13 ^ s; |
151 |
|
|
return(1.0-((s*(s*s*15731+789221)+1376312589)&0x7fffffff)/1073741824.0); |
152 |
|
|
} |
153 |
|
|
|
154 |
|
|
|
155 |
|
|
double |
156 |
|
|
fnoise3(p) /* compute fractal noise function */ |
157 |
greg |
1.3 |
double p[3]; |
158 |
greg |
1.1 |
{ |
159 |
|
|
double floor(); |
160 |
greg |
1.4 |
long t[3], v[3], beg[3]; |
161 |
greg |
1.3 |
double fval[8], fc; |
162 |
|
|
int branch; |
163 |
greg |
1.4 |
register long s; |
164 |
greg |
1.1 |
register int i, j; |
165 |
|
|
/* get starting cube */ |
166 |
greg |
1.3 |
s = (long)(1.0/EPSILON); |
167 |
|
|
for (i = 0; i < 3; i++) { |
168 |
|
|
t[i] = s*p[i]; |
169 |
|
|
beg[i] = s*floor(p[i]); |
170 |
|
|
} |
171 |
greg |
1.1 |
for (j = 0; j < 8; j++) { |
172 |
|
|
for (i = 0; i < 3; i++) { |
173 |
|
|
v[i] = beg[i]; |
174 |
|
|
if (j & 1<<i) |
175 |
greg |
1.3 |
v[i] += s; |
176 |
greg |
1.1 |
} |
177 |
|
|
fval[j] = frand3(v[0],v[1],v[2]); |
178 |
|
|
} |
179 |
|
|
/* compute fractal */ |
180 |
|
|
for ( ; ; ) { |
181 |
greg |
1.4 |
fc = 0.0; |
182 |
|
|
for (j = 0; j < 8; j++) |
183 |
|
|
fc += fval[j]; |
184 |
|
|
fc *= 0.125; |
185 |
|
|
if ((s >>= 1) == 0) |
186 |
|
|
return(fc); /* close enough */ |
187 |
greg |
1.1 |
branch = 0; |
188 |
|
|
for (i = 0; i < 3; i++) { /* do center */ |
189 |
|
|
v[i] = beg[i] + s; |
190 |
greg |
1.3 |
if (t[i] > v[i]) { |
191 |
greg |
1.1 |
branch |= 1<<i; |
192 |
greg |
1.3 |
} |
193 |
greg |
1.1 |
} |
194 |
greg |
1.3 |
fc += s*EPSILON*frand3(v[0],v[1],v[2]); |
195 |
greg |
1.1 |
fval[~branch & 7] = fc; |
196 |
|
|
for (i = 0; i < 3; i++) { /* do faces */ |
197 |
|
|
if (branch & 1<<i) |
198 |
|
|
v[i] += s; |
199 |
|
|
else |
200 |
|
|
v[i] -= s; |
201 |
|
|
fc = 0.0; |
202 |
|
|
for (j = 0; j < 8; j++) |
203 |
|
|
if (~(j^branch) & 1<<i) |
204 |
|
|
fc += fval[j]; |
205 |
greg |
1.3 |
fc = 0.25*fc + s*EPSILON*frand3(v[0],v[1],v[2]); |
206 |
greg |
1.1 |
fval[~(branch^1<<i) & 7] = fc; |
207 |
|
|
v[i] = beg[i] + s; |
208 |
|
|
} |
209 |
|
|
for (i = 0; i < 3; i++) { /* do edges */ |
210 |
|
|
j = (i+1)%3; |
211 |
|
|
if (branch & 1<<j) |
212 |
|
|
v[j] += s; |
213 |
|
|
else |
214 |
|
|
v[j] -= s; |
215 |
|
|
j = (i+2)%3; |
216 |
|
|
if (branch & 1<<j) |
217 |
|
|
v[j] += s; |
218 |
|
|
else |
219 |
|
|
v[j] -= s; |
220 |
|
|
fc = fval[branch & ~(1<<i)]; |
221 |
|
|
fc += fval[branch | 1<<i]; |
222 |
greg |
1.3 |
fc = 0.5*fc + s*EPSILON*frand3(v[0],v[1],v[2]); |
223 |
greg |
1.1 |
fval[branch^1<<i] = fc; |
224 |
|
|
j = (i+1)%3; |
225 |
|
|
v[j] = beg[j] + s; |
226 |
|
|
j = (i+2)%3; |
227 |
|
|
v[j] = beg[j] + s; |
228 |
|
|
} |
229 |
|
|
for (i = 0; i < 3; i++) /* new cube */ |
230 |
|
|
if (branch & 1<<i) |
231 |
|
|
beg[i] += s; |
232 |
|
|
} |
233 |
|
|
} |