| 1 |
greg |
1.1 |
/* Copyright (c) 1988 Regents of the University of California */
|
| 2 |
|
|
|
| 3 |
|
|
#ifndef lint
|
| 4 |
|
|
static char SCCSid[] = "$SunId$ LBL";
|
| 5 |
|
|
#endif
|
| 6 |
|
|
|
| 7 |
|
|
/*
|
| 8 |
|
|
* noise3.c - noise functions for random textures.
|
| 9 |
|
|
*
|
| 10 |
|
|
* Credit for the smooth algorithm goes to Ken Perlin.
|
| 11 |
|
|
* (ref. SIGGRAPH Vol 19, No 3, pp 287-96)
|
| 12 |
|
|
*
|
| 13 |
|
|
* 4/15/86
|
| 14 |
|
|
* 5/19/88 Added fractal noise function
|
| 15 |
|
|
*/
|
| 16 |
|
|
|
| 17 |
|
|
|
| 18 |
|
|
#define A 0
|
| 19 |
|
|
#define B 1
|
| 20 |
|
|
#define C 2
|
| 21 |
|
|
#define D 3
|
| 22 |
|
|
|
| 23 |
|
|
#define rand3a(x,y,z) frand(67*(x)+59*(y)+71*(z))
|
| 24 |
|
|
#define rand3b(x,y,z) frand(73*(x)+79*(y)+83*(z))
|
| 25 |
|
|
#define rand3c(x,y,z) frand(89*(x)+97*(y)+101*(z))
|
| 26 |
|
|
#define rand3d(x,y,z) frand(103*(x)+107*(y)+109*(z))
|
| 27 |
|
|
|
| 28 |
|
|
#define hermite(p0,p1,r0,r1,t) ( p0*((2.0*t-3.0)*t*t+1.0) + \
|
| 29 |
|
|
p1*(-2.0*t+3.0)*t*t + \
|
| 30 |
|
|
r0*((t-2.0)*t+1.0)*t + \
|
| 31 |
|
|
r1*(t-1.0)*t*t )
|
| 32 |
|
|
|
| 33 |
|
|
double *noise3(), noise3coef(), argument(), frand();
|
| 34 |
|
|
|
| 35 |
|
|
static long xlim[3][2];
|
| 36 |
|
|
static double xarg[3];
|
| 37 |
|
|
|
| 38 |
greg |
1.2 |
#define EPSILON .0001 /* error allowed in fractal */
|
| 39 |
greg |
1.1 |
|
| 40 |
greg |
1.3 |
#define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z))
|
| 41 |
greg |
1.1 |
|
| 42 |
|
|
double fnoise3();
|
| 43 |
|
|
|
| 44 |
|
|
|
| 45 |
|
|
double
|
| 46 |
|
|
l_noise3() /* compute 3-dimensional noise function */
|
| 47 |
|
|
{
|
| 48 |
|
|
return(noise3coef(D));
|
| 49 |
|
|
}
|
| 50 |
|
|
|
| 51 |
|
|
|
| 52 |
|
|
double
|
| 53 |
|
|
l_noise3a() /* compute x slope of noise function */
|
| 54 |
|
|
{
|
| 55 |
|
|
return(noise3coef(A));
|
| 56 |
|
|
}
|
| 57 |
|
|
|
| 58 |
|
|
|
| 59 |
|
|
double
|
| 60 |
|
|
l_noise3b() /* compute y slope of noise function */
|
| 61 |
|
|
{
|
| 62 |
|
|
return(noise3coef(B));
|
| 63 |
|
|
}
|
| 64 |
|
|
|
| 65 |
|
|
|
| 66 |
|
|
double
|
| 67 |
|
|
l_noise3c() /* compute z slope of noise function */
|
| 68 |
|
|
{
|
| 69 |
|
|
return(noise3coef(C));
|
| 70 |
|
|
}
|
| 71 |
|
|
|
| 72 |
|
|
|
| 73 |
|
|
double
|
| 74 |
|
|
l_fnoise3() /* compute fractal noise function */
|
| 75 |
|
|
{
|
| 76 |
|
|
double x[3];
|
| 77 |
|
|
|
| 78 |
|
|
x[0] = argument(1);
|
| 79 |
|
|
x[1] = argument(2);
|
| 80 |
|
|
x[2] = argument(3);
|
| 81 |
|
|
|
| 82 |
|
|
return(fnoise3(x));
|
| 83 |
|
|
}
|
| 84 |
|
|
|
| 85 |
|
|
|
| 86 |
|
|
static double
|
| 87 |
|
|
noise3coef(coef) /* return coefficient of noise function */
|
| 88 |
|
|
int coef;
|
| 89 |
|
|
{
|
| 90 |
|
|
double x[3];
|
| 91 |
|
|
|
| 92 |
|
|
x[0] = argument(1);
|
| 93 |
|
|
x[1] = argument(2);
|
| 94 |
|
|
x[2] = argument(3);
|
| 95 |
|
|
|
| 96 |
|
|
return(noise3(x)[coef]);
|
| 97 |
|
|
}
|
| 98 |
|
|
|
| 99 |
|
|
|
| 100 |
|
|
double *
|
| 101 |
|
|
noise3(xnew) /* compute the noise function */
|
| 102 |
|
|
register double xnew[3];
|
| 103 |
|
|
{
|
| 104 |
|
|
extern double floor();
|
| 105 |
|
|
static double x[3] = {-100000.0, -100000.0, -100000.0};
|
| 106 |
|
|
static double f[4];
|
| 107 |
|
|
|
| 108 |
|
|
if (x[0]==xnew[0] && x[1]==xnew[1] && x[2]==xnew[2])
|
| 109 |
|
|
return(f);
|
| 110 |
|
|
x[0] = xnew[0]; x[1] = xnew[1]; x[2] = xnew[2];
|
| 111 |
|
|
xlim[0][0] = floor(x[0]); xlim[0][1] = xlim[0][0] + 1;
|
| 112 |
|
|
xlim[1][0] = floor(x[1]); xlim[1][1] = xlim[1][0] + 1;
|
| 113 |
|
|
xlim[2][0] = floor(x[2]); xlim[2][1] = xlim[2][0] + 1;
|
| 114 |
|
|
xarg[0] = x[0] - xlim[0][0];
|
| 115 |
|
|
xarg[1] = x[1] - xlim[1][0];
|
| 116 |
|
|
xarg[2] = x[2] - xlim[2][0];
|
| 117 |
|
|
interpolate(f, 0, 3);
|
| 118 |
|
|
return(f);
|
| 119 |
|
|
}
|
| 120 |
|
|
|
| 121 |
|
|
|
| 122 |
|
|
static
|
| 123 |
|
|
interpolate(f, i, n)
|
| 124 |
|
|
double f[4];
|
| 125 |
|
|
register int i, n;
|
| 126 |
|
|
{
|
| 127 |
|
|
double f0[4], f1[4];
|
| 128 |
|
|
|
| 129 |
|
|
if (n == 0) {
|
| 130 |
|
|
f[A] = rand3a(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
|
| 131 |
|
|
f[B] = rand3b(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
|
| 132 |
|
|
f[C] = rand3c(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
|
| 133 |
|
|
f[D] = rand3d(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
|
| 134 |
|
|
} else {
|
| 135 |
|
|
n--;
|
| 136 |
|
|
interpolate(f0, i, n);
|
| 137 |
|
|
interpolate(f1, i | 1<<n, n);
|
| 138 |
|
|
f[A] = (1.0-xarg[n])*f0[A] + xarg[n]*f1[A];
|
| 139 |
|
|
f[B] = (1.0-xarg[n])*f0[B] + xarg[n]*f1[B];
|
| 140 |
|
|
f[C] = (1.0-xarg[n])*f0[C] + xarg[n]*f1[C];
|
| 141 |
|
|
f[D] = hermite(f0[D], f1[D], f0[n], f1[n], xarg[n]);
|
| 142 |
|
|
}
|
| 143 |
|
|
}
|
| 144 |
|
|
|
| 145 |
|
|
|
| 146 |
|
|
double
|
| 147 |
|
|
frand(s) /* get random number from seed */
|
| 148 |
|
|
register long s;
|
| 149 |
|
|
{
|
| 150 |
|
|
s = s<<13 ^ s;
|
| 151 |
|
|
return(1.0-((s*(s*s*15731+789221)+1376312589)&0x7fffffff)/1073741824.0);
|
| 152 |
|
|
}
|
| 153 |
|
|
|
| 154 |
|
|
|
| 155 |
|
|
double
|
| 156 |
|
|
l_hermite() /* library call for hermite interpolation */
|
| 157 |
|
|
{
|
| 158 |
|
|
double t;
|
| 159 |
|
|
|
| 160 |
|
|
t = argument(5);
|
| 161 |
|
|
return( hermite(argument(1), argument(2),
|
| 162 |
|
|
argument(3), argument(4), t) );
|
| 163 |
|
|
}
|
| 164 |
|
|
|
| 165 |
|
|
|
| 166 |
|
|
double
|
| 167 |
|
|
fnoise3(p) /* compute fractal noise function */
|
| 168 |
greg |
1.3 |
double p[3];
|
| 169 |
greg |
1.1 |
{
|
| 170 |
|
|
double floor();
|
| 171 |
greg |
1.3 |
long t[3], v[3], beg[3], s;
|
| 172 |
|
|
double fval[8], fc;
|
| 173 |
|
|
int branch;
|
| 174 |
greg |
1.1 |
register int i, j;
|
| 175 |
|
|
/* get starting cube */
|
| 176 |
greg |
1.3 |
s = (long)(1.0/EPSILON);
|
| 177 |
|
|
for (i = 0; i < 3; i++) {
|
| 178 |
|
|
t[i] = s*p[i];
|
| 179 |
|
|
beg[i] = s*floor(p[i]);
|
| 180 |
|
|
}
|
| 181 |
greg |
1.1 |
for (j = 0; j < 8; j++) {
|
| 182 |
|
|
for (i = 0; i < 3; i++) {
|
| 183 |
|
|
v[i] = beg[i];
|
| 184 |
|
|
if (j & 1<<i)
|
| 185 |
greg |
1.3 |
v[i] += s;
|
| 186 |
greg |
1.1 |
}
|
| 187 |
|
|
fval[j] = frand3(v[0],v[1],v[2]);
|
| 188 |
|
|
}
|
| 189 |
|
|
/* compute fractal */
|
| 190 |
|
|
for ( ; ; ) {
|
| 191 |
greg |
1.3 |
s >>= 1;
|
| 192 |
greg |
1.1 |
branch = 0;
|
| 193 |
|
|
for (i = 0; i < 3; i++) { /* do center */
|
| 194 |
|
|
v[i] = beg[i] + s;
|
| 195 |
greg |
1.3 |
if (t[i] > v[i]) {
|
| 196 |
greg |
1.1 |
branch |= 1<<i;
|
| 197 |
greg |
1.3 |
}
|
| 198 |
greg |
1.1 |
}
|
| 199 |
|
|
fc = 0.0;
|
| 200 |
|
|
for (j = 0; j < 8; j++)
|
| 201 |
|
|
fc += fval[j];
|
| 202 |
greg |
1.3 |
fc *= 0.125;
|
| 203 |
|
|
if (s < 1)
|
| 204 |
greg |
1.1 |
return(fc); /* close enough */
|
| 205 |
greg |
1.3 |
fc += s*EPSILON*frand3(v[0],v[1],v[2]);
|
| 206 |
greg |
1.1 |
fval[~branch & 7] = fc;
|
| 207 |
|
|
for (i = 0; i < 3; i++) { /* do faces */
|
| 208 |
|
|
if (branch & 1<<i)
|
| 209 |
|
|
v[i] += s;
|
| 210 |
|
|
else
|
| 211 |
|
|
v[i] -= s;
|
| 212 |
|
|
fc = 0.0;
|
| 213 |
|
|
for (j = 0; j < 8; j++)
|
| 214 |
|
|
if (~(j^branch) & 1<<i)
|
| 215 |
|
|
fc += fval[j];
|
| 216 |
greg |
1.3 |
fc = 0.25*fc + s*EPSILON*frand3(v[0],v[1],v[2]);
|
| 217 |
greg |
1.1 |
fval[~(branch^1<<i) & 7] = fc;
|
| 218 |
|
|
v[i] = beg[i] + s;
|
| 219 |
|
|
}
|
| 220 |
|
|
for (i = 0; i < 3; i++) { /* do edges */
|
| 221 |
|
|
j = (i+1)%3;
|
| 222 |
|
|
if (branch & 1<<j)
|
| 223 |
|
|
v[j] += s;
|
| 224 |
|
|
else
|
| 225 |
|
|
v[j] -= s;
|
| 226 |
|
|
j = (i+2)%3;
|
| 227 |
|
|
if (branch & 1<<j)
|
| 228 |
|
|
v[j] += s;
|
| 229 |
|
|
else
|
| 230 |
|
|
v[j] -= s;
|
| 231 |
|
|
fc = fval[branch & ~(1<<i)];
|
| 232 |
|
|
fc += fval[branch | 1<<i];
|
| 233 |
greg |
1.3 |
fc = 0.5*fc + s*EPSILON*frand3(v[0],v[1],v[2]);
|
| 234 |
greg |
1.1 |
fval[branch^1<<i] = fc;
|
| 235 |
|
|
j = (i+1)%3;
|
| 236 |
|
|
v[j] = beg[j] + s;
|
| 237 |
|
|
j = (i+2)%3;
|
| 238 |
|
|
v[j] = beg[j] + s;
|
| 239 |
|
|
}
|
| 240 |
|
|
for (i = 0; i < 3; i++) /* new cube */
|
| 241 |
|
|
if (branch & 1<<i)
|
| 242 |
|
|
beg[i] += s;
|
| 243 |
|
|
}
|
| 244 |
|
|
}
|