ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_wgmdf.c
Revision: 2.9
Committed: Fri Dec 20 16:29:50 2024 UTC (4 months, 1 week ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.8: +2 -2 lines
Log Message:
perf: Adjustment to source spread in lobe speculars that accounts for -dj

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_wgmdf.c,v 2.8 2024/12/19 23:25:28 greg Exp $";
3 #endif
4 /*
5 * Shading function for programmable Ward-Geisler-Moroder-Duer material.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "otypes.h"
13 #include "rtotypes.h"
14 #include "source.h"
15 #include "func.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 #ifndef MAXITER
20 #define MAXITER 10 /* maximum # specular ray attempts */
21 #endif
22 /* estimate of Fresnel function */
23 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00202943064)
24 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
25
26 /*
27 * This routine implements the anisotropic Gaussian
28 * model described by Ward in a 1992 Siggraph article and updated by
29 * Geisler-Moroder and Duer in a 2010 article in High Performance Graphics.
30 * We do not reorient incoming ray, using side in part to determine
31 * reflectance values. Most parameters are programmable with their own
32 * modifiers and/or value expressions.
33 *
34 * Arguments for MAT_WGMDF are:
35 * 13+ rs_mod rs rs_urough rs_vrough
36 * ts_mod ts ts_urough ts_vrough
37 * td_mod
38 * ux uy uz funcfile transform
39 * 0
40 * 9+ rfdif gfdif bfdif
41 * rbdif gbdif bbdif
42 * rtdif gtdif btdif
43 * A10 ..
44 *
45 * Where the rs_urough or rs_vrough expression yields zero, mirror-Fresnel
46 * effects are computed, similar to MAT_PLASTIC and MAT_METAL. The
47 * rs* expressions should not vary with incident angle, or the material
48 * will not be physically valid. Similarly, the ts* expressions should
49 * give the same value for coincident direction vectors from either side.
50 * There are independent modifiers for specular reflection,
51 * transmission, and diffuse transmission. Diffuse reflection
52 * applies the material's main modifier, which doesn't apply to
53 * anything else by default. However, any of the modifiers may be
54 * ALIASMOD, which will use the main material modifier, or VOIDID,
55 * which will just be white.
56 * Diffuse reflection and transmission colors and patterns add to
57 * the specular components, and are only adjusted with mirror-Fresnel
58 * reflection if specular reflection is greater than FRESHTHRESH. The
59 * specular transmission is likewise adjusted in such cases. Specified
60 * values for all components should sum to less than 1, but like other
61 * Radiance materials, this is not enforced, nor is a warning issued.
62 */
63 /* specularity flags */
64 #define SP_REFL 01 /* has reflected specular component */
65 #define SP_TRAN 02 /* has transmitted specular */
66 #define SP_RPURE 04 /* mirror reflection */
67 #define SP_TPURE 010 /* has view component */
68 #define SP_FLAT 020 /* flat reflecting surface */
69 #define SP_RBLT 040 /* reflection below sample threshold */
70 #define SP_TBLT 0100 /* transmission below threshold */
71
72 typedef struct {
73 char *nam; /* modifier name */
74 int hastexture; /* has a texture? */
75 FVECT pnorm; /* perturbed normal direction */
76 double pdot; /* perturbed dot product */
77 SCOLOR pcol; /* pattern color */
78 } MODVAL; /* modifier-derived values */
79
80 typedef struct {
81 MODVAL mo; /* modifier parameters */
82 SCOLOR scol; /* modified diffuse color */
83 } DCOMP; /* diffuse component parameters */
84
85 typedef struct {
86 MODVAL mo; /* modifier parameters */
87 SCOLOR scol; /* modified specular color */
88 FVECT u, v; /* u and v in-plane vectors */
89 double u_alpha; /* u roughness */
90 double v_alpha; /* v roughness */
91 } SCOMP; /* specular component parameters */
92
93 typedef struct {
94 RAY *rp; /* ray pointer */
95 OBJREC *mtp; /* material pointer */
96 MFUNC *mf; /* pointer to expression list */
97 int specfl; /* specularity flags, defined above */
98 FVECT ulocal; /* u-vector in local coordinates */
99 DCOMP rd, td; /* diffuse component params */
100 SCOMP rs, ts; /* specular component params */
101 FVECT prdir; /* vector in transmitted direction */
102 } WGMDDAT; /* WGMD material data */
103
104 #define clr_comps(wp) ((wp)->specfl = 0, \
105 (wp)->rd.mo.nam = (wp)->td.mo.nam = \
106 (wp)->rs.mo.nam = (wp)->ts.mo.nam = "")
107
108 /* assign modifier values */
109 static int
110 set_modval(MODVAL *mp, OBJECT omod, const RAY *r)
111 {
112 RAY tr;
113
114 if (!mp->nam[0])
115 mp->nam = (omod == OVOID) ? VOIDID : objptr(omod)->oname;
116 else if (!strcmp(mp->nam, VOIDID))
117 omod = OVOID;
118 else if (omod == OVOID)
119 return(0);
120 tr = *r; /* independent modifier */
121 raytexture(&tr, omod);
122 if (DOT(tr.pert,tr.pert) > FTINY*FTINY) {
123 mp->pdot = raynormal(mp->pnorm, &tr);
124 mp->hastexture = 1;
125 } else {
126 VCOPY(mp->pnorm, tr.ron);
127 mp->pdot = tr.rod;
128 mp->hastexture = 0;
129 }
130 copyscolor(mp->pcol, tr.pcol);
131 return(1);
132 }
133
134 /* fill modifier values, using previous setting if found */
135 static int
136 fill_modval(MODVAL *mp, const WGMDDAT *wp)
137 {
138 if (mp == &wp->rd.mo) { /* special case (should be first) */
139 set_modval(mp, wp->mtp->omod, wp->rp);
140 return(1);
141 } /* use main modifier? */
142 if (!strcmp(mp->nam, ALIASMOD) || !strcmp(mp->nam, wp->rd.mo.nam)) {
143 *mp = wp->rd.mo;
144 return(1);
145 } /* check others */
146 if (mp != &wp->td.mo && !strcmp(mp->nam, wp->td.mo.nam)) {
147 *mp = wp->td.mo;
148 return(1);
149 }
150 if (mp != &wp->rs.mo && !strcmp(mp->nam, wp->rs.mo.nam)) {
151 *mp = wp->rs.mo;
152 return(1);
153 }
154 if (mp != &wp->ts.mo && !strcmp(mp->nam, wp->ts.mo.nam)) {
155 *mp = wp->ts.mo;
156 return(1);
157 } /* new modifier */
158 return(set_modval(mp, lastmod(objndx(wp->mtp), mp->nam), wp->rp));
159 }
160
161 /* set calculation context for given component of MAT_WGMDF */
162 static int
163 setWGMDfunc(MODVAL *mp, const WGMDDAT *wp)
164 {
165 static char lastMod[MAXSTR];
166 double sf;
167 FVECT vec;
168
169 if (setfunc(wp->mtp, wp->rp) == 0 &&
170 !strcmp(mp->nam, lastMod))
171 return(0); /* already set */
172 strcpy(lastMod, mp->nam);
173 /* else (re)assign special variables */
174 sf = 1 - 2*(wp->rp->rod < 0);
175 varset("RdotP`", '=', mp->pdot*sf);
176 multv3(vec, mp->pnorm, funcxf.xfm);
177 sf /= funcxf.sca;
178 varset("NxP`", '=', vec[0]*sf);
179 varset("NyP`", '=', vec[1]*sf);
180 varset("NzP`", '=', vec[2]*sf);
181 return(1);
182 }
183
184 /* assign indicated diffuse component (do !trans first) */
185 static void
186 set_dcomp(WGMDDAT *wp, int trans)
187 {
188 DCOMP *dp = trans ? &wp->td : &wp->rd;
189 const int offs = trans ? 6 : 3*(wp->rp->rod < 0);
190
191 if (trans) { /* transmitted diffuse? */
192 if (intens(wp->mtp->oargs.farg+offs) <= FTINY) {
193 scolorblack(dp->scol);
194 return;
195 }
196 dp->mo.nam = wp->mtp->oargs.sarg[8];
197 if (!fill_modval(&dp->mo, wp)) {
198 sprintf(errmsg,
199 "unknown diffuse transmission modifier '%s'",
200 dp->mo.nam);
201 objerror(wp->mtp, USER, errmsg);
202 }
203 } else /* no priors for main mod */
204 fill_modval(&dp->mo, wp);
205
206 setscolor(dp->scol, wp->mtp->oargs.farg[offs],
207 wp->mtp->oargs.farg[offs+1],
208 wp->mtp->oargs.farg[offs+2]);
209 smultscolor(dp->scol, dp->mo.pcol);
210 }
211
212 /* assign indicated specular component */
213 static void
214 set_scomp(WGMDDAT *wp, int trans)
215 {
216 SCOMP *sp = trans ? &wp->ts : &wp->rs;
217 EPNODE **exa = wp->mf->ep + 3*(trans != 0);
218 double coef;
219 /* constant zero check */
220 if (exa[0]->type == NUM && exa[0]->v.num <= FTINY)
221 goto blackout;
222 /* need modifier */
223 sp->mo.nam = wp->mtp->oargs.sarg[4*(trans != 0)];
224 if (!fill_modval(&sp->mo, wp)) {
225 sprintf(errmsg, "unknown specular %s modifier '%s'",
226 trans ? "transmission" : "reflection", sp->mo.nam);
227 objerror(wp->mtp, USER, errmsg);
228 }
229 if (sintens(sp->mo.pcol) <= FTINY)
230 goto blackout; /* got black pattern */
231 setWGMDfunc(&sp->mo, wp); /* else compute coefficient */
232 errno = 0;
233 coef = evalue(exa[0]);
234 if ((errno == EDOM) | (errno == ERANGE)) {
235 objerror(wp->mtp, WARNING, "specular compute error");
236 goto blackout;
237 }
238 if (coef <= FTINY) /* negligible value? */
239 goto blackout;
240 copyscolor(sp->scol, sp->mo.pcol);
241 scalescolor(sp->scol, coef);
242 errno = 0; /* else get roughness */
243 sp->u_alpha = evalue(exa[1]);
244 sp->v_alpha = (sp->u_alpha > FTINY) ? evalue(exa[2]) : 0.0;
245 if ((errno == EDOM) | (errno == ERANGE)) {
246 objerror(wp->mtp, WARNING, "roughness compute error");
247 goto blackout;
248 } /* we have something... */
249 wp->specfl |= trans ? SP_TRAN : SP_REFL;
250 if (sp->v_alpha <= FTINY) { /* is it pure specular? */
251 wp->specfl |= trans ? SP_TPURE : SP_RPURE;
252 sp->u_alpha = sp->v_alpha = 0.0;
253 return;
254 } /* else get aniso coordinates */
255 fcross(sp->v, sp->mo.pnorm, wp->ulocal);
256 if (normalize(sp->v) == 0.0) { /* orientation vector==normal? */
257 if (fabs(sp->u_alpha - sp->v_alpha) > 0.001)
258 objerror(wp->mtp, WARNING, "bad orientation vector");
259 getperpendicular(sp->u, sp->mo.pnorm, 1); /* punting */
260 fcross(sp->v, sp->mo.pnorm, sp->u);
261 sp->u_alpha = sp->v_alpha = sqrt( 0.5 *
262 (sp->u_alpha*sp->u_alpha + sp->v_alpha*sp->v_alpha) );
263 } else
264 fcross(sp->u, sp->v, sp->mo.pnorm);
265 return;
266 blackout:
267 scolorblack(sp->scol); /* zero out component */
268 }
269
270 /* sample anisotropic Gaussian specular */
271 static void
272 agaussamp(WGMDDAT *wp)
273 {
274 RAY sr;
275 FVECT h;
276 double rv[2];
277 double d, sinp, cosp;
278 int maxiter, ntrials, nstarget, nstaken;
279 int i;
280 /* compute reflection */
281 if ((wp->specfl & (SP_REFL|SP_RPURE|SP_RBLT)) == SP_REFL &&
282 rayorigin(&sr, RSPECULAR, wp->rp, wp->rs.scol) == 0) {
283 SCOLOR scol;
284 nstarget = 1;
285 if (specjitter > 1.5) { /* multiple samples? */
286 nstarget = specjitter*wp->rp->rweight + .5;
287 if (sr.rweight <= minweight*nstarget)
288 nstarget = sr.rweight/minweight;
289 if (nstarget > 1) {
290 d = 1./nstarget;
291 scalescolor(sr.rcoef, d);
292 sr.rweight *= d;
293 } else
294 nstarget = 1;
295 }
296 scolorblack(scol);
297 dimlist[ndims++] = (int)(size_t)wp->mtp;
298 maxiter = MAXITER*nstarget;
299 for (nstaken = ntrials = 0; (nstaken < nstarget) &
300 (ntrials < maxiter); ntrials++) {
301 if (ntrials)
302 d = frandom();
303 else
304 d = urand(ilhash(dimlist,ndims)+samplendx);
305 multisamp(rv, 2, d);
306 d = 2.0*PI * rv[0];
307 cosp = tcos(d) * wp->rs.u_alpha;
308 sinp = tsin(d) * wp->rs.v_alpha;
309 d = 1./sqrt(cosp*cosp + sinp*sinp);
310 cosp *= d;
311 sinp *= d;
312 if ((0. <= specjitter) & (specjitter < 1.))
313 rv[1] = 1.0 - specjitter*rv[1];
314 d = (rv[1] <= FTINY) ? 1.0 : sqrt( -log(rv[1]) /
315 (cosp*cosp/(wp->rs.u_alpha*wp->rs.u_alpha) +
316 sinp*sinp/(wp->rs.v_alpha*wp->rs.v_alpha)) );
317 for (i = 0; i < 3; i++)
318 h[i] = wp->rs.mo.pnorm[i] +
319 d*(cosp*wp->rs.u[i] + sinp*wp->rs.v[i]);
320 d = -2.0 * DOT(h, wp->rp->rdir) / (1.0 + d*d);
321 VSUM(sr.rdir, wp->rp->rdir, h, d);
322 /* sample rejection test */
323 d = DOT(sr.rdir, wp->rp->ron);
324 if ((d > 0) ^ (wp->rp->rod > 0))
325 continue;
326 checknorm(sr.rdir);
327 if (nstarget > 1) { /* W-G-M-D adjustment */
328 if (nstaken) rayclear(&sr);
329 rayvalue(&sr);
330 d = 2./(1. + wp->rp->rod/d);
331 scalescolor(sr.rcol, d);
332 saddscolor(scol, sr.rcol);
333 } else {
334 rayvalue(&sr);
335 smultscolor(sr.rcol, sr.rcoef);
336 saddscolor(wp->rp->rcol, sr.rcol);
337 }
338 ++nstaken;
339 }
340 if (nstarget > 1) { /* final W-G-M-D weighting */
341 smultscolor(scol, sr.rcoef);
342 d = (double)nstarget/ntrials;
343 scalescolor(scol, d);
344 saddscolor(wp->rp->rcol, scol);
345 }
346 ndims--;
347 }
348 /* compute transmission */
349 if ((wp->specfl & (SP_TRAN|SP_TPURE|SP_TBLT)) == SP_TRAN &&
350 rayorigin(&sr, TSPECULAR, wp->rp, wp->ts.scol) == 0) {
351 nstarget = 1;
352 if (specjitter > 1.5) { /* multiple samples? */
353 nstarget = specjitter*wp->rp->rweight + .5;
354 if (sr.rweight <= minweight*nstarget)
355 nstarget = sr.rweight/minweight;
356 if (nstarget > 1) {
357 d = 1./nstarget;
358 scalescolor(sr.rcoef, d);
359 sr.rweight *= d;
360 } else
361 nstarget = 1;
362 }
363 dimlist[ndims++] = (int)(size_t)wp->mtp;
364 maxiter = MAXITER*nstarget;
365 for (nstaken = ntrials = 0; (nstaken < nstarget) &
366 (ntrials < maxiter); ntrials++) {
367 if (ntrials)
368 d = frandom();
369 else
370 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
371 multisamp(rv, 2, d);
372 d = 2.0*PI * rv[0];
373 cosp = tcos(d) * wp->ts.u_alpha;
374 sinp = tsin(d) * wp->ts.v_alpha;
375 d = 1./sqrt(cosp*cosp + sinp*sinp);
376 cosp *= d;
377 sinp *= d;
378 if ((0. <= specjitter) & (specjitter < 1.))
379 rv[1] = 1.0 - specjitter*rv[1];
380 if (rv[1] <= FTINY)
381 d = 1.0;
382 else
383 d = sqrt(-log(rv[1]) /
384 (cosp*cosp/(wp->ts.u_alpha*wp->ts.u_alpha) +
385 sinp*sinp/(wp->ts.v_alpha*wp->ts.v_alpha)));
386 for (i = 0; i < 3; i++)
387 sr.rdir[i] = wp->prdir[i] +
388 d*(cosp*wp->ts.u[i] + sinp*wp->ts.v[i]);
389 /* rejection test */
390 if ((DOT(sr.rdir,wp->rp->ron) > 0) == (wp->rp->rod > 0))
391 continue;
392 normalize(sr.rdir); /* OK, normalize */
393 if (nstaken) /* multi-sampling? */
394 rayclear(&sr);
395 rayvalue(&sr);
396 smultscolor(sr.rcol, sr.rcoef);
397 saddscolor(wp->rp->rcol, sr.rcol);
398 ++nstaken;
399 }
400 ndims--;
401 }
402 }
403
404 /* compute source contribution for MAT_WGMDF */
405 static void
406 dirwgmdf(SCOLOR scval, void *uwp, FVECT ldir, double omega)
407 {
408 WGMDDAT *wp = (WGMDDAT *)uwp;
409 const int hitfront = (wp->rp->rod > 0);
410 double fresadj = 1.;
411 double ldot;
412 double dtmp, dtmp1, dtmp2;
413 FVECT h;
414 double au2, av2;
415 SCOLOR sctmp;
416
417 scolorblack(scval); /* will add component coefficients */
418
419 /* XXX ignores which side is lit */
420 if (wp->specfl & SP_RPURE && pbright(wp->rs.scol) >= FRESTHRESH)
421 fresadj = 1. - FRESNE(fabs(DOT(wp->rs.mo.pnorm,ldir)));
422
423 if (sintens(wp->rd.scol) > FTINY &&
424 ((ldot = DOT(wp->rd.mo.pnorm,ldir)) > 0) == hitfront) {
425 /*
426 * Compute diffuse reflection coefficient for source.
427 */
428 copyscolor(sctmp, wp->rd.scol);
429 dtmp = fabs(ldot) * omega * (1.0/PI) * fresadj;
430 scalescolor(sctmp, dtmp);
431 saddscolor(scval, sctmp);
432 }
433 if (sintens(wp->td.scol) > FTINY &&
434 ((ldot = DOT(wp->td.mo.pnorm,ldir)) > 0) ^ hitfront) {
435 /*
436 * Compute diffuse transmission coefficient for source.
437 */
438 copyscolor(sctmp, wp->td.scol);
439 dtmp = fabs(ldot) * omega * (1.0/PI) * fresadj;
440 scalescolor(sctmp, dtmp);
441 saddscolor(scval, sctmp);
442 }
443 #if 0 /* XXX not yet implemented */
444 if (ambRayInPmap(wp->rp))
445 return; /* specular accounted for in photon map */
446 #endif
447 if ((wp->specfl & (SP_REFL|SP_RPURE)) == SP_REFL &&
448 ((ldot = DOT(wp->rs.mo.pnorm,ldir)) > 0) == hitfront) {
449 /*
450 * Compute specular reflection coefficient for source using
451 * anisotropic Gaussian distribution model.
452 */
453 /* add source width if flat */
454 if (wp->specfl & SP_FLAT)
455 au2 = av2 = (1. - dstrsrc) * omega * (0.25/PI);
456 else
457 au2 = av2 = 0.0;
458 au2 += wp->rs.u_alpha*wp->rs.u_alpha;
459 av2 += wp->rs.v_alpha*wp->rs.v_alpha;
460 /* half vector */
461 VSUB(h, ldir, wp->rp->rdir);
462 /* ellipse */
463 dtmp1 = DOT(wp->rs.u, h);
464 dtmp1 *= dtmp1 / au2;
465 dtmp2 = DOT(wp->rs.v, h);
466 dtmp2 *= dtmp2 / av2;
467 /* W-G-M-D model */
468 dtmp = DOT(wp->rs.mo.pnorm, h);
469 dtmp *= dtmp;
470 dtmp1 = (dtmp1 + dtmp2) / dtmp;
471 dtmp = exp(-dtmp1) * DOT(h,h) /
472 (PI * dtmp*dtmp * sqrt(au2*av2));
473
474 if (dtmp > FTINY) { /* worth using? */
475 copyscolor(sctmp, wp->rs.scol);
476 dtmp *= fabs(ldot) * omega;
477 scalescolor(sctmp, dtmp);
478 saddscolor(scval, sctmp);
479 }
480 }
481 if ((wp->specfl & (SP_TRAN|SP_TPURE)) == SP_TRAN &&
482 ((ldot = DOT(wp->ts.mo.pnorm,ldir)) > 0) ^ hitfront) {
483 /*
484 * Compute specular transmission coefficient for source.
485 */
486 /* roughness + source */
487 au2 = av2 = omega * (1.0/PI);
488 au2 += wp->ts.u_alpha*wp->ts.u_alpha;
489 av2 += wp->ts.v_alpha*wp->ts.v_alpha;
490 /* "half vector" */
491 VSUB(h, ldir, wp->prdir);
492 dtmp = DOT(h,h);
493 if (dtmp > FTINY*FTINY) {
494 dtmp1 = DOT(h,wp->ts.mo.pnorm);
495 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
496 }
497 if (dtmp > FTINY*FTINY) {
498 dtmp1 = DOT(h,wp->ts.u);
499 dtmp1 *= dtmp1 / au2;
500 dtmp2 = DOT(h,wp->ts.v);
501 dtmp2 *= dtmp2 / av2;
502 dtmp = (dtmp1 + dtmp2) / dtmp;
503 dtmp = exp(-dtmp);
504 } else
505 dtmp = 1.0;
506 /* Gaussian */
507 dtmp *= (1.0/PI) * sqrt(-ldot/(wp->ts.mo.pdot*au2*av2));
508
509 if (dtmp > FTINY) { /* worth using? */
510 copyscolor(sctmp, wp->ts.scol);
511 dtmp *= omega;
512 scalescolor(sctmp, dtmp);
513 saddscolor(scval, sctmp);
514 }
515 }
516 }
517
518 /* color a ray that hit a programmable WGMD material */
519 int
520 m_wgmdf(OBJREC *m, RAY *r)
521 {
522 RAY lr;
523 WGMDDAT wd;
524 SCOLOR sctmp;
525 FVECT anorm;
526 int i;
527
528 if (!backvis & (r->rod < 0.0)) {
529 raytrans(r);
530 return(1); /* backside invisible */
531 }
532 if ((m->oargs.nsargs < 13) | (m->oargs.nfargs < 9))
533 objerror(m, USER, "bad number of arguments");
534
535 if (r->crtype & SHADOW && !strcmp(m->oargs.sarg[5], "0"))
536 return(1); /* first shadow test */
537 clr_comps(&wd);
538 wd.rp = r;
539 wd.mtp = m;
540 wd.mf = getfunc(m, 12, 0xEEE, 1);
541 set_dcomp(&wd, 0); /* gets main modifier */
542 setWGMDfunc(&wd.rd.mo, &wd); /* get local u vector */
543 errno = 0;
544 for (i = 0; i < 3; i++)
545 wd.ulocal[i] = evalue(wd.mf->ep[6+i]);
546 if ((errno == EDOM) | (errno == ERANGE))
547 wd.ulocal[0] = wd.ulocal[1] = wd.ulocal[2] = 0.0;
548 else if (wd.mf->fxp != &unitxf)
549 multv3(wd.ulocal, wd.ulocal, wd.mf->fxp->xfm);
550
551 set_scomp(&wd, 1); /* sets SP_TPURE */
552 if (r->crtype & SHADOW && !(wd.specfl & SP_TPURE))
553 return(1); /* second shadow test */
554 set_dcomp(&wd, 1);
555 set_scomp(&wd, 0);
556 wd.specfl |= SP_FLAT*(!wd.rs.mo.hastexture &&
557 r->ro != NULL && isflat(r->ro->otype));
558 /* apply Fresnel adjustments? */
559 if (wd.specfl & SP_RPURE && pbright(wd.rs.scol) >= FRESTHRESH) {
560 const double fest = FRESNE(fabs(wd.rs.mo.pdot));
561 for (i = NCSAMP; i--; )
562 wd.rs.scol[i] += fest*(1. - wd.rs.scol[i]);
563 scalescolor(wd.rd.scol, 1.-fest);
564 scalescolor(wd.ts.scol, 1.-fest);
565 scalescolor(wd.td.scol, 1.-fest);
566 }
567 /* check specular thresholds */
568 wd.specfl |= SP_RBLT*((wd.specfl & (SP_REFL|SP_RPURE)) == SP_REFL &&
569 specthresh >= pbright(wd.rs.scol)-FTINY);
570 wd.specfl |= SP_TBLT*((wd.specfl & (SP_TRAN|SP_TPURE)) == SP_TRAN &&
571 specthresh >= pbright(wd.ts.scol)-FTINY);
572 /* get through direction */
573 if (wd.specfl & SP_TRAN && wd.ts.mo.hastexture &&
574 !(r->crtype & (SHADOW|AMBIENT))) {
575 for (i = 0; i < 3; i++) /* perturb */
576 wd.prdir[i] = r->rdir[i] - wd.ts.mo.pnorm[i] + r->ron[i];
577 if ((DOT(wd.prdir,r->ron) > 0) ^ (r->rod > 0))
578 normalize(wd.prdir); /* OK */
579 else /* too much */
580 VCOPY(wd.prdir, r->rdir);
581 } else
582 VCOPY(wd.prdir, r->rdir);
583 /* transmitted view ray? */
584 if ((wd.specfl & (SP_TRAN|SP_TPURE|SP_TBLT)) == (SP_TRAN|SP_TPURE) &&
585 rayorigin(&lr, TRANS, r, wd.ts.scol) == 0) {
586 VCOPY(lr.rdir, wd.prdir);
587 rayvalue(&lr);
588 smultscolor(lr.rcol, lr.rcoef);
589 saddscolor(r->rcol, lr.rcol);
590 if (scolor_mean(wd.ts.scol) >= 0.999) {
591 /* completely transparent */
592 smultscolor(lr.mcol, lr.rcoef);
593 copyscolor(r->mcol, lr.mcol);
594 r->rmt = r->rot + lr.rmt;
595 r->rxt = r->rot + lr.rxt;
596 } else if (pbright(wd.ts.scol) >
597 pbright(wd.td.scol) + pbright(wd.rd.scol))
598 r->rxt = r->rot + raydistance(&lr);
599 }
600 if (r->crtype & SHADOW)
601 return(1); /* the rest is shadow */
602 /* mirror ray? */
603 if ((wd.specfl & (SP_REFL|SP_RPURE|SP_RBLT)) == (SP_REFL|SP_RPURE) &&
604 rayorigin(&lr, REFLECTED, r, wd.rs.scol) == 0) {
605 VSUM(lr.rdir, r->rdir, wd.rs.mo.pnorm, 2.*wd.rs.mo.pdot);
606 /* fall back if would penetrate */
607 if (wd.rs.mo.hastexture &&
608 (DOT(lr.rdir,r->ron) > 0) ^ (r->rod > 0))
609 VSUM(lr.rdir, r->rdir, r->ron, 2.*r->rod);
610 checknorm(lr.rdir);
611 rayvalue(&lr);
612 smultscolor(lr.rcol, lr.rcoef);
613 copyscolor(r->mcol, lr.rcol);
614 saddscolor(r->rcol, lr.rcol);
615 r->rmt = r->rot;
616 if (wd.specfl & SP_FLAT && r->crtype & AMBIENT)
617 r->rmt += raydistance(&lr);
618 }
619 if (wd.specfl & (SP_REFL|SP_TRAN)) /* specularly scattered rays */
620 agaussamp(&wd); /* checks *BLT flags */
621
622 if (sintens(wd.rd.scol) > FTINY) { /* ambient from this side */
623 if (r->rod > 0) {
624 VCOPY(anorm, wd.rd.mo.pnorm);
625 } else {
626 anorm[0] = -wd.rd.mo.pnorm[0];
627 anorm[1] = -wd.rd.mo.pnorm[1];
628 anorm[2] = -wd.rd.mo.pnorm[2];
629 }
630 copyscolor(sctmp, wd.rd.scol);
631 if (wd.specfl & SP_RBLT) /* add in specular as well? */
632 saddscolor(sctmp, wd.rs.scol);
633 multambient(sctmp, r, anorm);
634 saddscolor(r->rcol, sctmp); /* add to returned color */
635 }
636 if (sintens(wd.td.scol) > FTINY) { /* ambient from other side */
637 if (r->rod > 0) {
638 anorm[0] = -wd.td.mo.pnorm[0];
639 anorm[1] = -wd.td.mo.pnorm[1];
640 anorm[2] = -wd.td.mo.pnorm[2];
641 } else {
642 VCOPY(anorm, wd.td.mo.pnorm);
643 }
644 copyscolor(sctmp, wd.td.scol);
645 if (wd.specfl & SP_TBLT) /* add in specular as well? */
646 saddscolor(sctmp, wd.ts.scol)
647 multambient(sctmp, r, anorm);
648 saddscolor(r->rcol, sctmp);
649 }
650 direct(r, dirwgmdf, &wd); /* add direct component last */
651 return(1);
652 }