ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_wgmdf.c
Revision: 2.6
Committed: Wed Dec 18 17:57:06 2024 UTC (4 months, 2 weeks ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.5: +14 -15 lines
Log Message:
perf: Minor tweaks

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_wgmdf.c,v 2.5 2024/12/17 20:03:13 greg Exp $";
3 #endif
4 /*
5 * Shading function for programmable Ward-Geisler-Moroder-Duer material.
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "otypes.h"
13 #include "rtotypes.h"
14 #include "source.h"
15 #include "func.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 #ifndef MAXITER
20 #define MAXITER 10 /* maximum # specular ray attempts */
21 #endif
22 /* estimate of Fresnel function */
23 #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00202943064)
24 #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
25
26 /*
27 * This routine implements the anisotropic Gaussian
28 * model described by Ward in a 1992 Siggraph article and updated by
29 * Geisler-Moroder and Duer in a 2010 article in High Performance Graphics.
30 * We do not reorient incoming ray, using side in part to determine
31 * reflectance values. Most parameters are programmable with their own
32 * modifiers and/or value expressions.
33 *
34 * Arguments for MAT_WGMDF are:
35 * 13+ rs_mod rs rs_urough rs_vrough
36 * ts_mod ts ts_urough ts_vrough
37 * td_mod
38 * ux uy uz funcfile transform
39 * 0
40 * 9+ rfdif gfdif bfdif
41 * rbdif gbdif bbdif
42 * rtdif gtdif btdif
43 * A10 ..
44 *
45 * Where the rs_urough or rs_vrough expression yields zero, mirror-Fresnel
46 * effects are computed, similar to MAT_PLASTIC and MAT_METAL. The
47 * rs* expressions should not vary with incident angle, or the material
48 * will not be physically valid. Similarly, the ts* expressions should
49 * give the same value for coincident direction vectors from either side.
50 * There are independent modifiers for specular reflection,
51 * transmission, and diffuse transmission. Diffuse reflection
52 * applies the material's main modifier, which doesn't apply to
53 * anything else by default. However, any of the modifiers may be
54 * ALIASMOD, which will use the main material modifier, or VOIDID,
55 * which will just be white.
56 * Diffuse reflection and transmission colors and patterns add to
57 * the specular components, and are only adjusted with mirror-Fresnel
58 * reflection if specular reflection is greater than FRESHTHRESH. The
59 * specular transmission is likewise adjusted in such cases. Specified
60 * values for all components should sum to less than 1, but like other
61 * Radiance materials, this is not enforced, nor is a warning issued.
62 */
63 /* specularity flags */
64 #define SP_REFL 01 /* has reflected specular component */
65 #define SP_TRAN 02 /* has transmitted specular */
66 #define SP_RPURE 04 /* mirror reflection */
67 #define SP_TPURE 010 /* has view component */
68 #define SP_FLAT 020 /* flat reflecting surface */
69 #define SP_RBLT 040 /* reflection below sample threshold */
70 #define SP_TBLT 0100 /* transmission below threshold */
71
72 typedef struct {
73 char *nam; /* modifier name */
74 int hastexture; /* has a texture? */
75 FVECT pnorm; /* perturbed normal direction */
76 double pdot; /* perturbed dot product */
77 SCOLOR pcol; /* pattern color */
78 } MODVAL; /* modifier-derived values */
79
80 typedef struct {
81 MODVAL mo; /* modifier parameters */
82 SCOLOR scol; /* modified diffuse color */
83 } DCOMP; /* diffuse component parameters */
84
85 typedef struct {
86 MODVAL mo; /* modifier parameters */
87 SCOLOR scol; /* modified specular color */
88 FVECT u, v; /* u and v in-plane vectors */
89 double u_alpha; /* u roughness */
90 double v_alpha; /* v roughness */
91 } SCOMP; /* specular component parameters */
92
93 typedef struct {
94 RAY *rp; /* ray pointer */
95 OBJREC *mtp; /* material pointer */
96 MFUNC *mf; /* pointer to expression list */
97 int specfl; /* specularity flags, defined above */
98 FVECT ulocal; /* u-vector in local coordinates */
99 DCOMP rd, td; /* diffuse component params */
100 SCOMP rs, ts; /* specular component params */
101 FVECT prdir; /* vector in transmitted direction */
102 } WGMDDAT; /* WGMD material data */
103
104 #define clr_comps(wp) ((wp)->specfl = 0, \
105 (wp)->rd.mo.nam = (wp)->td.mo.nam = \
106 (wp)->rs.mo.nam = (wp)->ts.mo.nam = "")
107
108 /* assign modifier values */
109 static int
110 set_modval(MODVAL *mp, OBJECT omod, const RAY *r)
111 {
112 RAY tr;
113
114 if (!mp->nam[0])
115 mp->nam = (omod == OVOID) ? VOIDID : objptr(omod)->oname;
116 else if (!strcmp(mp->nam, VOIDID))
117 omod = OVOID;
118 else if (omod == OVOID)
119 return(0);
120 tr = *r; /* independent modifier */
121 raytexture(&tr, omod);
122 if (DOT(tr.pert,tr.pert) > FTINY*FTINY) {
123 mp->pdot = raynormal(mp->pnorm, &tr);
124 mp->hastexture = 1;
125 } else {
126 VCOPY(mp->pnorm, tr.ron);
127 mp->pdot = tr.rod;
128 mp->hastexture = 0;
129 }
130 copyscolor(mp->pcol, tr.pcol);
131 return(1);
132 }
133
134 /* fill modifier values, using previous setting if found */
135 static int
136 fill_modval(MODVAL *mp, const WGMDDAT *wp)
137 {
138 if (mp == &wp->rd.mo) { /* special case (should be first) */
139 set_modval(mp, wp->mtp->omod, wp->rp);
140 return(1);
141 } /* use main modifier? */
142 if (!strcmp(mp->nam, ALIASMOD) || !strcmp(mp->nam, wp->rd.mo.nam)) {
143 *mp = wp->rd.mo;
144 return(1);
145 } /* check others */
146 if (mp != &wp->td.mo && !strcmp(mp->nam, wp->td.mo.nam)) {
147 *mp = wp->td.mo;
148 return(1);
149 }
150 if (mp != &wp->rs.mo && !strcmp(mp->nam, wp->rs.mo.nam)) {
151 *mp = wp->rs.mo;
152 return(1);
153 }
154 if (mp != &wp->ts.mo && !strcmp(mp->nam, wp->ts.mo.nam)) {
155 *mp = wp->ts.mo;
156 return(1);
157 } /* new modifier */
158 return(set_modval(mp, lastmod(objndx(wp->mtp), mp->nam), wp->rp));
159 }
160
161 /* set calculation context for given component of MAT_WGMDF */
162 static int
163 setWGMDfunc(MODVAL *mp, const WGMDDAT *wp)
164 {
165 static char lastMod[MAXSTR];
166 double sf;
167 FVECT vec;
168
169 if (setfunc(wp->mtp, wp->rp) == 0 &&
170 !strcmp(mp->nam, lastMod))
171 return(0); /* already set */
172 strcpy(lastMod, mp->nam);
173 /* else (re)assign special variables */
174 sf = 1 - 2*(wp->rp->rod < 0);
175 varset("RdotP`", '=', mp->pdot*sf);
176 multv3(vec, mp->pnorm, funcxf.xfm);
177 sf /= funcxf.sca;
178 varset("NxP`", '=', vec[0]*sf);
179 varset("NyP`", '=', vec[1]*sf);
180 varset("NzP`", '=', vec[2]*sf);
181 return(1);
182 }
183
184 /* assign indicated diffuse component (do !trans first) */
185 static void
186 set_dcomp(WGMDDAT *wp, int trans)
187 {
188 DCOMP *dp = trans ? &wp->td : &wp->rd;
189 const int offs = trans ? 6 : 3*(wp->rp->rod < 0);
190
191 if (trans) { /* transmitted diffuse? */
192 if (intens(wp->mtp->oargs.farg+offs) <= FTINY) {
193 scolorblack(dp->scol);
194 return;
195 }
196 dp->mo.nam = wp->mtp->oargs.sarg[8];
197 if (!fill_modval(&dp->mo, wp)) {
198 sprintf(errmsg,
199 "unknown diffuse transmission modifier '%s'",
200 dp->mo.nam);
201 objerror(wp->mtp, USER, errmsg);
202 }
203 } else /* no priors for main mod */
204 fill_modval(&dp->mo, wp);
205
206 setscolor(dp->scol, wp->mtp->oargs.farg[offs],
207 wp->mtp->oargs.farg[offs+1],
208 wp->mtp->oargs.farg[offs+2]);
209 smultscolor(dp->scol, dp->mo.pcol);
210 }
211
212 /* assign indicated specular component */
213 static void
214 set_scomp(WGMDDAT *wp, int trans)
215 {
216 SCOMP *sp = trans ? &wp->ts : &wp->rs;
217 EPNODE **exa = wp->mf->ep + 3*(trans != 0);
218 double coef;
219 /* constant zero check */
220 if (exa[0]->type == NUM && exa[0]->v.num <= FTINY) {
221 scolorblack(sp->scol);
222 return;
223 } /* need modifier */
224 sp->mo.nam = wp->mtp->oargs.sarg[4*(trans != 0)];
225 if (!fill_modval(&sp->mo, wp)) {
226 sprintf(errmsg, "unknown specular %s modifier '%s'",
227 trans ? "transmission" : "reflection", sp->mo.nam);
228 objerror(wp->mtp, USER, errmsg);
229 }
230 setWGMDfunc(&sp->mo, wp);
231 errno = 0;
232 coef = evalue(exa[0]);
233 if ((errno == EDOM) | (errno == ERANGE)) {
234 objerror(wp->mtp, WARNING, "specular compute error");
235 scolorblack(sp->scol);
236 return;
237 }
238 if (coef <= FTINY) { /* negligible value? */
239 scolorblack(sp->scol);
240 return;
241 }
242 copyscolor(sp->scol, sp->mo.pcol);
243 scalescolor(sp->scol, coef);
244 if (sintens(sp->scol) <= FTINY) {
245 scolorblack(sp->scol);
246 return; /* got black pattern */
247 }
248 errno = 0; /* else get roughness */
249 sp->u_alpha = evalue(exa[1]);
250 sp->v_alpha = (sp->u_alpha > FTINY) ? evalue(exa[2]) : 0.0;
251 if ((errno == EDOM) | (errno == ERANGE)) {
252 objerror(wp->mtp, WARNING, "roughness compute error");
253 scolorblack(sp->scol);
254 return;
255 } /* we have something... */
256 wp->specfl |= trans ? SP_TRAN : SP_REFL;
257 if (sp->v_alpha <= FTINY) { /* is it pure specular? */
258 wp->specfl |= trans ? SP_TPURE : SP_RPURE;
259 sp->u_alpha = sp->v_alpha = 0.0;
260 return;
261 }
262 /* get anisotropic coordinates */
263 fcross(sp->v, sp->mo.pnorm, wp->ulocal);
264 if (normalize(sp->v) == 0.0) { /* orientation vector==normal? */
265 if (fabs(sp->u_alpha - sp->v_alpha) > 0.001)
266 objerror(wp->mtp, WARNING, "bad orientation vector");
267 getperpendicular(sp->u, sp->mo.pnorm, 1); /* punting */
268 fcross(sp->v, sp->mo.pnorm, sp->u);
269 sp->u_alpha = sp->v_alpha = sqrt( 0.5 *
270 (sp->u_alpha*sp->u_alpha + sp->v_alpha*sp->v_alpha) );
271 } else
272 fcross(sp->u, sp->v, sp->mo.pnorm);
273 }
274
275 /* sample anisotropic Gaussian specular */
276 static void
277 agaussamp(WGMDDAT *wp)
278 {
279 RAY sr;
280 FVECT h;
281 double rv[2];
282 double d, sinp, cosp;
283 int maxiter, ntrials, nstarget, nstaken;
284 int i;
285 /* compute reflection */
286 if ((wp->specfl & (SP_REFL|SP_RPURE|SP_RBLT)) == SP_REFL &&
287 rayorigin(&sr, RSPECULAR, wp->rp, wp->rs.scol) == 0) {
288 SCOLOR scol;
289 nstarget = 1;
290 if (specjitter > 1.5) { /* multiple samples? */
291 nstarget = specjitter*wp->rp->rweight + .5;
292 if (sr.rweight <= minweight*nstarget)
293 nstarget = sr.rweight/minweight;
294 if (nstarget > 1) {
295 d = 1./nstarget;
296 scalescolor(sr.rcoef, d);
297 sr.rweight *= d;
298 } else
299 nstarget = 1;
300 }
301 scolorblack(scol);
302 dimlist[ndims++] = (int)(size_t)wp->mtp;
303 maxiter = MAXITER*nstarget;
304 for (nstaken = ntrials = 0; (nstaken < nstarget) &
305 (ntrials < maxiter); ntrials++) {
306 if (ntrials)
307 d = frandom();
308 else
309 d = urand(ilhash(dimlist,ndims)+samplendx);
310 multisamp(rv, 2, d);
311 d = 2.0*PI * rv[0];
312 cosp = tcos(d) * wp->rs.u_alpha;
313 sinp = tsin(d) * wp->rs.v_alpha;
314 d = 1./sqrt(cosp*cosp + sinp*sinp);
315 cosp *= d;
316 sinp *= d;
317 if ((0. <= specjitter) & (specjitter < 1.))
318 rv[1] = 1.0 - specjitter*rv[1];
319 d = (rv[1] <= FTINY) ? 1.0 : sqrt( -log(rv[1]) /
320 (cosp*cosp/(wp->rs.u_alpha*wp->rs.u_alpha) +
321 sinp*sinp/(wp->rs.v_alpha*wp->rs.v_alpha)) );
322 for (i = 0; i < 3; i++)
323 h[i] = wp->rs.mo.pnorm[i] +
324 d*(cosp*wp->rs.u[i] + sinp*wp->rs.v[i]);
325 d = -2.0 * DOT(h, wp->rp->rdir) / (1.0 + d*d);
326 VSUM(sr.rdir, wp->rp->rdir, h, d);
327 /* sample rejection test */
328 d = DOT(sr.rdir, wp->rp->ron);
329 if ((d > 0) ^ (wp->rp->rod > 0))
330 continue;
331 checknorm(sr.rdir);
332 if (nstarget > 1) { /* W-G-M-D adjustment */
333 if (nstaken) rayclear(&sr);
334 rayvalue(&sr);
335 d = 2./(1. + wp->rp->rod/d);
336 scalescolor(sr.rcol, d);
337 saddscolor(scol, sr.rcol);
338 } else {
339 rayvalue(&sr);
340 smultscolor(sr.rcol, sr.rcoef);
341 saddscolor(wp->rp->rcol, sr.rcol);
342 }
343 ++nstaken;
344 }
345 if (nstarget > 1) { /* final W-G-M-D weighting */
346 smultscolor(scol, sr.rcoef);
347 d = (double)nstarget/ntrials;
348 scalescolor(scol, d);
349 saddscolor(wp->rp->rcol, scol);
350 }
351 ndims--;
352 }
353 /* compute transmission */
354 if ((wp->specfl & (SP_TRAN|SP_TPURE|SP_TBLT)) == SP_TRAN &&
355 rayorigin(&sr, TSPECULAR, wp->rp, wp->ts.scol) == 0) {
356 nstarget = 1;
357 if (specjitter > 1.5) { /* multiple samples? */
358 nstarget = specjitter*wp->rp->rweight + .5;
359 if (sr.rweight <= minweight*nstarget)
360 nstarget = sr.rweight/minweight;
361 if (nstarget > 1) {
362 d = 1./nstarget;
363 scalescolor(sr.rcoef, d);
364 sr.rweight *= d;
365 } else
366 nstarget = 1;
367 }
368 dimlist[ndims++] = (int)(size_t)wp->mtp;
369 maxiter = MAXITER*nstarget;
370 for (nstaken = ntrials = 0; (nstaken < nstarget) &
371 (ntrials < maxiter); ntrials++) {
372 if (ntrials)
373 d = frandom();
374 else
375 d = urand(ilhash(dimlist,ndims)+1823+samplendx);
376 multisamp(rv, 2, d);
377 d = 2.0*PI * rv[0];
378 cosp = tcos(d) * wp->ts.u_alpha;
379 sinp = tsin(d) * wp->ts.v_alpha;
380 d = 1./sqrt(cosp*cosp + sinp*sinp);
381 cosp *= d;
382 sinp *= d;
383 if ((0. <= specjitter) & (specjitter < 1.))
384 rv[1] = 1.0 - specjitter*rv[1];
385 if (rv[1] <= FTINY)
386 d = 1.0;
387 else
388 d = sqrt(-log(rv[1]) /
389 (cosp*cosp/(wp->ts.u_alpha*wp->ts.u_alpha) +
390 sinp*sinp/(wp->ts.v_alpha*wp->ts.v_alpha)));
391 for (i = 0; i < 3; i++)
392 sr.rdir[i] = wp->prdir[i] +
393 d*(cosp*wp->ts.u[i] + sinp*wp->ts.v[i]);
394 /* rejection test */
395 if ((DOT(sr.rdir,wp->rp->ron) > 0) == (wp->rp->rod > 0))
396 continue;
397 normalize(sr.rdir); /* OK, normalize */
398 if (nstaken) /* multi-sampling? */
399 rayclear(&sr);
400 rayvalue(&sr);
401 smultscolor(sr.rcol, sr.rcoef);
402 saddscolor(wp->rp->rcol, sr.rcol);
403 ++nstaken;
404 }
405 ndims--;
406 }
407 }
408
409 /* compute source contribution for MAT_WGMDF */
410 static void
411 dirwgmdf(SCOLOR scval, void *uwp, FVECT ldir, double omega)
412 {
413 WGMDDAT *wp = (WGMDDAT *)uwp;
414 const int hitfront = (wp->rp->rod > 0);
415 double fresadj = 1.;
416 double ldot;
417 double dtmp, dtmp1, dtmp2;
418 FVECT h;
419 double au2, av2;
420 SCOLOR sctmp;
421
422 scolorblack(scval); /* will add component coefficients */
423
424 /* XXX ignores which side is lit */
425 if (wp->specfl & SP_RPURE && pbright(wp->rs.scol) >= FRESTHRESH)
426 fresadj = 1. - FRESNE(fabs(DOT(wp->rs.mo.pnorm,ldir)));
427
428 if (sintens(wp->rd.scol) > FTINY &&
429 ((ldot = DOT(wp->rd.mo.pnorm,ldir)) > 0) == hitfront) {
430 /*
431 * Compute diffuse reflection coefficient for source.
432 */
433 copyscolor(sctmp, wp->rd.scol);
434 dtmp = fabs(ldot) * omega * (1.0/PI) * fresadj;
435 scalescolor(sctmp, dtmp);
436 saddscolor(scval, sctmp);
437 }
438 if (sintens(wp->td.scol) > FTINY &&
439 ((ldot = DOT(wp->td.mo.pnorm,ldir)) > 0) ^ hitfront) {
440 /*
441 * Compute diffuse transmission coefficient for source.
442 */
443 copyscolor(sctmp, wp->td.scol);
444 dtmp = fabs(ldot) * omega * (1.0/PI) * fresadj;
445 scalescolor(sctmp, dtmp);
446 saddscolor(scval, sctmp);
447 }
448 #if 0 /* XXX not yet implemented */
449 if (ambRayInPmap(wp->rp))
450 return; /* specular accounted for in photon map */
451 #endif
452 if ((wp->specfl & (SP_REFL|SP_RPURE)) == SP_REFL &&
453 ((ldot = DOT(wp->rs.mo.pnorm,ldir)) > 0) == hitfront) {
454 /*
455 * Compute specular reflection coefficient for source using
456 * anisotropic Gaussian distribution model.
457 */
458 /* add source width if flat */
459 if (wp->specfl & SP_FLAT)
460 au2 = av2 = omega * (0.25/PI);
461 else
462 au2 = av2 = 0.0;
463 au2 += wp->rs.u_alpha*wp->rs.u_alpha;
464 av2 += wp->rs.v_alpha*wp->rs.v_alpha;
465 /* half vector */
466 VSUB(h, ldir, wp->rp->rdir);
467 /* ellipse */
468 dtmp1 = DOT(wp->rs.u, h);
469 dtmp1 *= dtmp1 / au2;
470 dtmp2 = DOT(wp->rs.v, h);
471 dtmp2 *= dtmp2 / av2;
472 /* W-G-M-D model */
473 dtmp = DOT(wp->rs.mo.pnorm, h);
474 dtmp *= dtmp;
475 dtmp1 = (dtmp1 + dtmp2) / dtmp;
476 dtmp = exp(-dtmp1) * DOT(h,h) /
477 (PI * dtmp*dtmp * sqrt(au2*av2));
478
479 if (dtmp > FTINY) { /* worth using? */
480 copyscolor(sctmp, wp->rs.scol);
481 dtmp *= fabs(ldot) * omega;
482 scalescolor(sctmp, dtmp);
483 saddscolor(scval, sctmp);
484 }
485 }
486 if ((wp->specfl & (SP_TRAN|SP_TPURE)) == SP_TRAN &&
487 ((ldot = DOT(wp->ts.mo.pnorm,ldir)) > 0) ^ hitfront) {
488 /*
489 * Compute specular transmission coefficient for source.
490 */
491 /* roughness + source */
492 au2 = av2 = omega * (1.0/PI);
493 au2 += wp->ts.u_alpha*wp->ts.u_alpha;
494 av2 += wp->ts.v_alpha*wp->ts.v_alpha;
495 /* "half vector" */
496 VSUB(h, ldir, wp->prdir);
497 dtmp = DOT(h,h);
498 if (dtmp > FTINY*FTINY) {
499 dtmp1 = DOT(h,wp->ts.mo.pnorm);
500 dtmp = 1.0 - dtmp1*dtmp1/dtmp;
501 }
502 if (dtmp > FTINY*FTINY) {
503 dtmp1 = DOT(h,wp->ts.u);
504 dtmp1 *= dtmp1 / au2;
505 dtmp2 = DOT(h,wp->ts.v);
506 dtmp2 *= dtmp2 / av2;
507 dtmp = (dtmp1 + dtmp2) / dtmp;
508 dtmp = exp(-dtmp);
509 } else
510 dtmp = 1.0;
511 /* Gaussian */
512 dtmp *= (1.0/PI) * sqrt(-ldot/(wp->ts.mo.pdot*au2*av2));
513
514 if (dtmp > FTINY) { /* worth using? */
515 copyscolor(sctmp, wp->ts.scol);
516 dtmp *= omega;
517 scalescolor(sctmp, dtmp);
518 saddscolor(scval, sctmp);
519 }
520 }
521 }
522
523 /* color a ray that hit a programmable WGMD material */
524 int
525 m_wgmdf(OBJREC *m, RAY *r)
526 {
527 RAY lr;
528 WGMDDAT wd;
529 SCOLOR sctmp;
530 FVECT anorm;
531 int i;
532
533 if (!backvis & (r->rod < 0.0)) {
534 raytrans(r);
535 return(1); /* backside invisible */
536 }
537 if ((m->oargs.nsargs < 13) | (m->oargs.nfargs < 9))
538 objerror(m, USER, "bad number of arguments");
539
540 if (r->crtype & SHADOW && !strcmp(m->oargs.sarg[5], "0"))
541 return(1); /* first shadow test */
542 clr_comps(&wd);
543 wd.rp = r;
544 wd.mtp = m;
545 wd.mf = getfunc(m, 12, 0xEEE, 1);
546 set_dcomp(&wd, 0); /* gets main modifier */
547 setWGMDfunc(&wd.rd.mo, &wd); /* get local u vector */
548 errno = 0;
549 for (i = 0; i < 3; i++)
550 wd.ulocal[i] = evalue(wd.mf->ep[6+i]);
551 if ((errno == EDOM) | (errno == ERANGE))
552 wd.ulocal[0] = wd.ulocal[1] = wd.ulocal[2] = 0.0;
553 else if (wd.mf->fxp != &unitxf)
554 multv3(wd.ulocal, wd.ulocal, wd.mf->fxp->xfm);
555
556 set_scomp(&wd, 1); /* sets SP_TPURE */
557 if (r->crtype & SHADOW && !(wd.specfl & SP_TPURE))
558 return(1); /* second shadow test */
559 set_dcomp(&wd, 1);
560 set_scomp(&wd, 0);
561 wd.specfl |= SP_FLAT*(r->ro != NULL && isflat(r->ro->otype));
562 /* apply Fresnel adjustments? */
563 if (wd.specfl & SP_RPURE && pbright(wd.rs.scol) >= FRESTHRESH) {
564 const double fest = FRESNE(fabs(wd.rs.mo.pdot));
565 for (i = NCSAMP; i--; )
566 wd.rs.scol[i] += fest*(1. - wd.rs.scol[i]);
567 scalescolor(wd.rd.scol, 1.-fest);
568 scalescolor(wd.ts.scol, 1.-fest);
569 scalescolor(wd.td.scol, 1.-fest);
570 }
571 /* check specular thresholds */
572 wd.specfl |= SP_RBLT*((wd.specfl & (SP_REFL|SP_RPURE)) == SP_REFL &&
573 specthresh >= pbright(wd.rs.scol)-FTINY);
574 wd.specfl |= SP_TBLT*((wd.specfl & (SP_TRAN|SP_TPURE)) == SP_TRAN &&
575 specthresh >= pbright(wd.ts.scol)-FTINY);
576 /* get through direction */
577 if (wd.specfl & SP_TRAN && wd.ts.mo.hastexture &&
578 !(r->crtype & (SHADOW|AMBIENT))) {
579 for (i = 0; i < 3; i++) /* perturb */
580 wd.prdir[i] = r->rdir[i] - wd.ts.mo.pnorm[i] + r->ron[i];
581 if ((DOT(wd.prdir,r->ron) > 0) ^ (r->rod > 0))
582 normalize(wd.prdir); /* OK */
583 else /* too much */
584 VCOPY(wd.prdir, r->rdir);
585 } else
586 VCOPY(wd.prdir, r->rdir);
587 /* transmitted view ray? */
588 if ((wd.specfl & (SP_TRAN|SP_TPURE|SP_TBLT)) == (SP_TRAN|SP_TPURE) &&
589 rayorigin(&lr, TRANS, r, wd.ts.scol) == 0) {
590 VCOPY(lr.rdir, wd.prdir);
591 rayvalue(&lr);
592 smultscolor(lr.rcol, lr.rcoef);
593 saddscolor(r->rcol, lr.rcol);
594 if (scolor_mean(wd.ts.scol) >= 0.999) {
595 /* completely transparent */
596 smultscolor(lr.mcol, lr.rcoef);
597 copyscolor(r->mcol, lr.mcol);
598 r->rmt = r->rot + lr.rmt;
599 r->rxt = r->rot + lr.rxt;
600 } else if (pbright(wd.ts.scol) >
601 pbright(wd.td.scol) + pbright(wd.rd.scol))
602 r->rxt = r->rot + raydistance(&lr);
603 }
604 if (r->crtype & SHADOW)
605 return(1); /* the rest is shadow */
606 /* mirror ray? */
607 if ((wd.specfl & (SP_REFL|SP_RPURE|SP_RBLT)) == (SP_REFL|SP_RPURE) &&
608 rayorigin(&lr, REFLECTED, r, wd.rs.scol) == 0) {
609 VSUM(lr.rdir, r->rdir, wd.rs.mo.pnorm, 2.*wd.rs.mo.pdot);
610 /* fall back if would penetrate */
611 if (wd.rs.mo.hastexture &&
612 (DOT(lr.rdir,r->ron) > 0) ^ (r->rod > 0))
613 VSUM(lr.rdir, r->rdir, r->ron, 2.*r->rod);
614 checknorm(lr.rdir);
615 rayvalue(&lr);
616 smultscolor(lr.rcol, lr.rcoef);
617 copyscolor(r->mcol, lr.rcol);
618 saddscolor(r->rcol, lr.rcol);
619 r->rmt = r->rot;
620 if (wd.specfl & SP_FLAT &&
621 !wd.rs.mo.hastexture | (r->crtype & AMBIENT))
622 r->rmt += raydistance(&lr);
623 }
624 if (wd.specfl & (SP_REFL|SP_TRAN)) /* specularly scattered rays */
625 agaussamp(&wd); /* checks *BLT flags */
626
627 if (sintens(wd.rd.scol) > FTINY) { /* ambient from this side */
628 if (r->rod > 0) {
629 VCOPY(anorm, wd.rd.mo.pnorm);
630 } else {
631 anorm[0] = -wd.rd.mo.pnorm[0];
632 anorm[1] = -wd.rd.mo.pnorm[1];
633 anorm[2] = -wd.rd.mo.pnorm[2];
634 }
635 copyscolor(sctmp, wd.rd.scol);
636 if (wd.specfl & SP_RBLT) /* add in specular as well? */
637 saddscolor(sctmp, wd.rs.scol);
638 multambient(sctmp, r, anorm);
639 saddscolor(r->rcol, sctmp); /* add to returned color */
640 }
641 if (sintens(wd.td.scol) > FTINY) { /* ambient from other side */
642 if (r->rod > 0) {
643 anorm[0] = -wd.td.mo.pnorm[0];
644 anorm[1] = -wd.td.mo.pnorm[1];
645 anorm[2] = -wd.td.mo.pnorm[2];
646 } else {
647 VCOPY(anorm, wd.td.mo.pnorm);
648 }
649 copyscolor(sctmp, wd.td.scol);
650 if (wd.specfl & SP_TBLT) /* add in specular as well? */
651 saddscolor(sctmp, wd.ts.scol)
652 multambient(sctmp, r, anorm);
653 saddscolor(r->rcol, sctmp);
654 }
655 direct(r, dirwgmdf, &wd); /* add direct component last */
656 return(1);
657 }