ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_wgmdf.c
Revision: 2.8
Committed: Thu Dec 19 23:25:28 2024 UTC (4 months, 2 weeks ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.7: +4 -4 lines
Log Message:
fix: Issue with textured surfaces and source scattering

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.8 static const char RCSid[] = "$Id: m_wgmdf.c,v 2.7 2024/12/18 18:34:13 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading function for programmable Ward-Geisler-Moroder-Duer material.
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "otypes.h"
13     #include "rtotypes.h"
14     #include "source.h"
15     #include "func.h"
16     #include "random.h"
17     #include "pmapmat.h"
18    
19     #ifndef MAXITER
20     #define MAXITER 10 /* maximum # specular ray attempts */
21     #endif
22     /* estimate of Fresnel function */
23     #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00202943064)
24     #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
25    
26     /*
27     * This routine implements the anisotropic Gaussian
28     * model described by Ward in a 1992 Siggraph article and updated by
29     * Geisler-Moroder and Duer in a 2010 article in High Performance Graphics.
30     * We do not reorient incoming ray, using side in part to determine
31     * reflectance values. Most parameters are programmable with their own
32     * modifiers and/or value expressions.
33     *
34     * Arguments for MAT_WGMDF are:
35     * 13+ rs_mod rs rs_urough rs_vrough
36     * ts_mod ts ts_urough ts_vrough
37     * td_mod
38     * ux uy uz funcfile transform
39     * 0
40     * 9+ rfdif gfdif bfdif
41     * rbdif gbdif bbdif
42     * rtdif gtdif btdif
43     * A10 ..
44     *
45     * Where the rs_urough or rs_vrough expression yields zero, mirror-Fresnel
46     * effects are computed, similar to MAT_PLASTIC and MAT_METAL. The
47     * rs* expressions should not vary with incident angle, or the material
48     * will not be physically valid. Similarly, the ts* expressions should
49     * give the same value for coincident direction vectors from either side.
50     * There are independent modifiers for specular reflection,
51     * transmission, and diffuse transmission. Diffuse reflection
52     * applies the material's main modifier, which doesn't apply to
53     * anything else by default. However, any of the modifiers may be
54     * ALIASMOD, which will use the main material modifier, or VOIDID,
55     * which will just be white.
56     * Diffuse reflection and transmission colors and patterns add to
57     * the specular components, and are only adjusted with mirror-Fresnel
58     * reflection if specular reflection is greater than FRESHTHRESH. The
59     * specular transmission is likewise adjusted in such cases. Specified
60     * values for all components should sum to less than 1, but like other
61     * Radiance materials, this is not enforced, nor is a warning issued.
62     */
63     /* specularity flags */
64     #define SP_REFL 01 /* has reflected specular component */
65     #define SP_TRAN 02 /* has transmitted specular */
66     #define SP_RPURE 04 /* mirror reflection */
67     #define SP_TPURE 010 /* has view component */
68     #define SP_FLAT 020 /* flat reflecting surface */
69     #define SP_RBLT 040 /* reflection below sample threshold */
70     #define SP_TBLT 0100 /* transmission below threshold */
71    
72     typedef struct {
73     char *nam; /* modifier name */
74     int hastexture; /* has a texture? */
75     FVECT pnorm; /* perturbed normal direction */
76     double pdot; /* perturbed dot product */
77     SCOLOR pcol; /* pattern color */
78     } MODVAL; /* modifier-derived values */
79    
80     typedef struct {
81     MODVAL mo; /* modifier parameters */
82     SCOLOR scol; /* modified diffuse color */
83     } DCOMP; /* diffuse component parameters */
84    
85     typedef struct {
86     MODVAL mo; /* modifier parameters */
87     SCOLOR scol; /* modified specular color */
88     FVECT u, v; /* u and v in-plane vectors */
89     double u_alpha; /* u roughness */
90     double v_alpha; /* v roughness */
91     } SCOMP; /* specular component parameters */
92    
93     typedef struct {
94     RAY *rp; /* ray pointer */
95     OBJREC *mtp; /* material pointer */
96     MFUNC *mf; /* pointer to expression list */
97     int specfl; /* specularity flags, defined above */
98     FVECT ulocal; /* u-vector in local coordinates */
99     DCOMP rd, td; /* diffuse component params */
100     SCOMP rs, ts; /* specular component params */
101     FVECT prdir; /* vector in transmitted direction */
102     } WGMDDAT; /* WGMD material data */
103    
104     #define clr_comps(wp) ((wp)->specfl = 0, \
105     (wp)->rd.mo.nam = (wp)->td.mo.nam = \
106     (wp)->rs.mo.nam = (wp)->ts.mo.nam = "")
107    
108     /* assign modifier values */
109     static int
110     set_modval(MODVAL *mp, OBJECT omod, const RAY *r)
111     {
112     RAY tr;
113    
114     if (!mp->nam[0])
115     mp->nam = (omod == OVOID) ? VOIDID : objptr(omod)->oname;
116     else if (!strcmp(mp->nam, VOIDID))
117     omod = OVOID;
118     else if (omod == OVOID)
119     return(0);
120     tr = *r; /* independent modifier */
121     raytexture(&tr, omod);
122     if (DOT(tr.pert,tr.pert) > FTINY*FTINY) {
123     mp->pdot = raynormal(mp->pnorm, &tr);
124     mp->hastexture = 1;
125     } else {
126     VCOPY(mp->pnorm, tr.ron);
127     mp->pdot = tr.rod;
128     mp->hastexture = 0;
129     }
130     copyscolor(mp->pcol, tr.pcol);
131     return(1);
132     }
133    
134     /* fill modifier values, using previous setting if found */
135     static int
136     fill_modval(MODVAL *mp, const WGMDDAT *wp)
137     {
138     if (mp == &wp->rd.mo) { /* special case (should be first) */
139     set_modval(mp, wp->mtp->omod, wp->rp);
140     return(1);
141     } /* use main modifier? */
142     if (!strcmp(mp->nam, ALIASMOD) || !strcmp(mp->nam, wp->rd.mo.nam)) {
143     *mp = wp->rd.mo;
144     return(1);
145     } /* check others */
146     if (mp != &wp->td.mo && !strcmp(mp->nam, wp->td.mo.nam)) {
147     *mp = wp->td.mo;
148     return(1);
149     }
150     if (mp != &wp->rs.mo && !strcmp(mp->nam, wp->rs.mo.nam)) {
151     *mp = wp->rs.mo;
152     return(1);
153     }
154     if (mp != &wp->ts.mo && !strcmp(mp->nam, wp->ts.mo.nam)) {
155     *mp = wp->ts.mo;
156     return(1);
157     } /* new modifier */
158     return(set_modval(mp, lastmod(objndx(wp->mtp), mp->nam), wp->rp));
159     }
160    
161 greg 2.6 /* set calculation context for given component of MAT_WGMDF */
162 greg 2.5 static int
163     setWGMDfunc(MODVAL *mp, const WGMDDAT *wp)
164     {
165 greg 2.6 static char lastMod[MAXSTR];
166 greg 2.5 double sf;
167     FVECT vec;
168    
169     if (setfunc(wp->mtp, wp->rp) == 0 &&
170     !strcmp(mp->nam, lastMod))
171     return(0); /* already set */
172 greg 2.6 strcpy(lastMod, mp->nam);
173 greg 2.5 /* else (re)assign special variables */
174 greg 2.6 sf = 1 - 2*(wp->rp->rod < 0);
175     varset("RdotP`", '=', mp->pdot*sf);
176     multv3(vec, mp->pnorm, funcxf.xfm);
177 greg 2.5 sf /= funcxf.sca;
178     varset("NxP`", '=', vec[0]*sf);
179     varset("NyP`", '=', vec[1]*sf);
180     varset("NzP`", '=', vec[2]*sf);
181     return(1);
182     }
183    
184 greg 2.1 /* assign indicated diffuse component (do !trans first) */
185     static void
186     set_dcomp(WGMDDAT *wp, int trans)
187     {
188     DCOMP *dp = trans ? &wp->td : &wp->rd;
189     const int offs = trans ? 6 : 3*(wp->rp->rod < 0);
190    
191     if (trans) { /* transmitted diffuse? */
192     if (intens(wp->mtp->oargs.farg+offs) <= FTINY) {
193     scolorblack(dp->scol);
194     return;
195     }
196     dp->mo.nam = wp->mtp->oargs.sarg[8];
197     if (!fill_modval(&dp->mo, wp)) {
198     sprintf(errmsg,
199     "unknown diffuse transmission modifier '%s'",
200     dp->mo.nam);
201     objerror(wp->mtp, USER, errmsg);
202     }
203     } else /* no priors for main mod */
204     fill_modval(&dp->mo, wp);
205    
206     setscolor(dp->scol, wp->mtp->oargs.farg[offs],
207     wp->mtp->oargs.farg[offs+1],
208     wp->mtp->oargs.farg[offs+2]);
209     smultscolor(dp->scol, dp->mo.pcol);
210     }
211    
212     /* assign indicated specular component */
213     static void
214     set_scomp(WGMDDAT *wp, int trans)
215     {
216 greg 2.6 SCOMP *sp = trans ? &wp->ts : &wp->rs;
217     EPNODE **exa = wp->mf->ep + 3*(trans != 0);
218     double coef;
219 greg 2.5 /* constant zero check */
220 greg 2.7 if (exa[0]->type == NUM && exa[0]->v.num <= FTINY)
221     goto blackout;
222     /* need modifier */
223 greg 2.5 sp->mo.nam = wp->mtp->oargs.sarg[4*(trans != 0)];
224     if (!fill_modval(&sp->mo, wp)) {
225     sprintf(errmsg, "unknown specular %s modifier '%s'",
226     trans ? "transmission" : "reflection", sp->mo.nam);
227     objerror(wp->mtp, USER, errmsg);
228     }
229 greg 2.7 if (sintens(sp->mo.pcol) <= FTINY)
230     goto blackout; /* got black pattern */
231     setWGMDfunc(&sp->mo, wp); /* else compute coefficient */
232 greg 2.1 errno = 0;
233 greg 2.6 coef = evalue(exa[0]);
234 greg 2.1 if ((errno == EDOM) | (errno == ERANGE)) {
235     objerror(wp->mtp, WARNING, "specular compute error");
236 greg 2.7 goto blackout;
237 greg 2.1 }
238 greg 2.7 if (coef <= FTINY) /* negligible value? */
239     goto blackout;
240 greg 2.1 copyscolor(sp->scol, sp->mo.pcol);
241     scalescolor(sp->scol, coef);
242 greg 2.5 errno = 0; /* else get roughness */
243 greg 2.6 sp->u_alpha = evalue(exa[1]);
244     sp->v_alpha = (sp->u_alpha > FTINY) ? evalue(exa[2]) : 0.0;
245 greg 2.1 if ((errno == EDOM) | (errno == ERANGE)) {
246     objerror(wp->mtp, WARNING, "roughness compute error");
247 greg 2.7 goto blackout;
248 greg 2.1 } /* we have something... */
249     wp->specfl |= trans ? SP_TRAN : SP_REFL;
250     if (sp->v_alpha <= FTINY) { /* is it pure specular? */
251     wp->specfl |= trans ? SP_TPURE : SP_RPURE;
252     sp->u_alpha = sp->v_alpha = 0.0;
253     return;
254 greg 2.7 } /* else get aniso coordinates */
255 greg 2.1 fcross(sp->v, sp->mo.pnorm, wp->ulocal);
256     if (normalize(sp->v) == 0.0) { /* orientation vector==normal? */
257     if (fabs(sp->u_alpha - sp->v_alpha) > 0.001)
258     objerror(wp->mtp, WARNING, "bad orientation vector");
259     getperpendicular(sp->u, sp->mo.pnorm, 1); /* punting */
260     fcross(sp->v, sp->mo.pnorm, sp->u);
261     sp->u_alpha = sp->v_alpha = sqrt( 0.5 *
262     (sp->u_alpha*sp->u_alpha + sp->v_alpha*sp->v_alpha) );
263     } else
264     fcross(sp->u, sp->v, sp->mo.pnorm);
265 greg 2.7 return;
266     blackout:
267     scolorblack(sp->scol); /* zero out component */
268 greg 2.1 }
269    
270     /* sample anisotropic Gaussian specular */
271     static void
272     agaussamp(WGMDDAT *wp)
273     {
274     RAY sr;
275     FVECT h;
276     double rv[2];
277     double d, sinp, cosp;
278     int maxiter, ntrials, nstarget, nstaken;
279     int i;
280     /* compute reflection */
281     if ((wp->specfl & (SP_REFL|SP_RPURE|SP_RBLT)) == SP_REFL &&
282     rayorigin(&sr, RSPECULAR, wp->rp, wp->rs.scol) == 0) {
283     SCOLOR scol;
284     nstarget = 1;
285     if (specjitter > 1.5) { /* multiple samples? */
286     nstarget = specjitter*wp->rp->rweight + .5;
287     if (sr.rweight <= minweight*nstarget)
288     nstarget = sr.rweight/minweight;
289     if (nstarget > 1) {
290     d = 1./nstarget;
291     scalescolor(sr.rcoef, d);
292     sr.rweight *= d;
293     } else
294     nstarget = 1;
295     }
296     scolorblack(scol);
297     dimlist[ndims++] = (int)(size_t)wp->mtp;
298     maxiter = MAXITER*nstarget;
299     for (nstaken = ntrials = 0; (nstaken < nstarget) &
300     (ntrials < maxiter); ntrials++) {
301     if (ntrials)
302     d = frandom();
303     else
304     d = urand(ilhash(dimlist,ndims)+samplendx);
305     multisamp(rv, 2, d);
306     d = 2.0*PI * rv[0];
307     cosp = tcos(d) * wp->rs.u_alpha;
308     sinp = tsin(d) * wp->rs.v_alpha;
309     d = 1./sqrt(cosp*cosp + sinp*sinp);
310     cosp *= d;
311     sinp *= d;
312     if ((0. <= specjitter) & (specjitter < 1.))
313     rv[1] = 1.0 - specjitter*rv[1];
314     d = (rv[1] <= FTINY) ? 1.0 : sqrt( -log(rv[1]) /
315     (cosp*cosp/(wp->rs.u_alpha*wp->rs.u_alpha) +
316     sinp*sinp/(wp->rs.v_alpha*wp->rs.v_alpha)) );
317     for (i = 0; i < 3; i++)
318     h[i] = wp->rs.mo.pnorm[i] +
319     d*(cosp*wp->rs.u[i] + sinp*wp->rs.v[i]);
320     d = -2.0 * DOT(h, wp->rp->rdir) / (1.0 + d*d);
321     VSUM(sr.rdir, wp->rp->rdir, h, d);
322     /* sample rejection test */
323     d = DOT(sr.rdir, wp->rp->ron);
324     if ((d > 0) ^ (wp->rp->rod > 0))
325     continue;
326     checknorm(sr.rdir);
327     if (nstarget > 1) { /* W-G-M-D adjustment */
328     if (nstaken) rayclear(&sr);
329     rayvalue(&sr);
330     d = 2./(1. + wp->rp->rod/d);
331     scalescolor(sr.rcol, d);
332     saddscolor(scol, sr.rcol);
333     } else {
334     rayvalue(&sr);
335     smultscolor(sr.rcol, sr.rcoef);
336     saddscolor(wp->rp->rcol, sr.rcol);
337     }
338     ++nstaken;
339     }
340     if (nstarget > 1) { /* final W-G-M-D weighting */
341     smultscolor(scol, sr.rcoef);
342     d = (double)nstarget/ntrials;
343     scalescolor(scol, d);
344     saddscolor(wp->rp->rcol, scol);
345     }
346     ndims--;
347     }
348     /* compute transmission */
349     if ((wp->specfl & (SP_TRAN|SP_TPURE|SP_TBLT)) == SP_TRAN &&
350     rayorigin(&sr, TSPECULAR, wp->rp, wp->ts.scol) == 0) {
351     nstarget = 1;
352     if (specjitter > 1.5) { /* multiple samples? */
353     nstarget = specjitter*wp->rp->rweight + .5;
354     if (sr.rweight <= minweight*nstarget)
355     nstarget = sr.rweight/minweight;
356     if (nstarget > 1) {
357     d = 1./nstarget;
358     scalescolor(sr.rcoef, d);
359     sr.rweight *= d;
360     } else
361     nstarget = 1;
362     }
363     dimlist[ndims++] = (int)(size_t)wp->mtp;
364     maxiter = MAXITER*nstarget;
365     for (nstaken = ntrials = 0; (nstaken < nstarget) &
366     (ntrials < maxiter); ntrials++) {
367     if (ntrials)
368     d = frandom();
369     else
370     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
371     multisamp(rv, 2, d);
372     d = 2.0*PI * rv[0];
373     cosp = tcos(d) * wp->ts.u_alpha;
374     sinp = tsin(d) * wp->ts.v_alpha;
375     d = 1./sqrt(cosp*cosp + sinp*sinp);
376     cosp *= d;
377     sinp *= d;
378     if ((0. <= specjitter) & (specjitter < 1.))
379     rv[1] = 1.0 - specjitter*rv[1];
380     if (rv[1] <= FTINY)
381     d = 1.0;
382     else
383     d = sqrt(-log(rv[1]) /
384     (cosp*cosp/(wp->ts.u_alpha*wp->ts.u_alpha) +
385     sinp*sinp/(wp->ts.v_alpha*wp->ts.v_alpha)));
386     for (i = 0; i < 3; i++)
387     sr.rdir[i] = wp->prdir[i] +
388     d*(cosp*wp->ts.u[i] + sinp*wp->ts.v[i]);
389     /* rejection test */
390     if ((DOT(sr.rdir,wp->rp->ron) > 0) == (wp->rp->rod > 0))
391     continue;
392     normalize(sr.rdir); /* OK, normalize */
393     if (nstaken) /* multi-sampling? */
394     rayclear(&sr);
395     rayvalue(&sr);
396     smultscolor(sr.rcol, sr.rcoef);
397     saddscolor(wp->rp->rcol, sr.rcol);
398     ++nstaken;
399     }
400     ndims--;
401     }
402     }
403    
404     /* compute source contribution for MAT_WGMDF */
405     static void
406     dirwgmdf(SCOLOR scval, void *uwp, FVECT ldir, double omega)
407     {
408     WGMDDAT *wp = (WGMDDAT *)uwp;
409     const int hitfront = (wp->rp->rod > 0);
410     double fresadj = 1.;
411     double ldot;
412     double dtmp, dtmp1, dtmp2;
413     FVECT h;
414     double au2, av2;
415     SCOLOR sctmp;
416    
417     scolorblack(scval); /* will add component coefficients */
418    
419     /* XXX ignores which side is lit */
420     if (wp->specfl & SP_RPURE && pbright(wp->rs.scol) >= FRESTHRESH)
421     fresadj = 1. - FRESNE(fabs(DOT(wp->rs.mo.pnorm,ldir)));
422    
423     if (sintens(wp->rd.scol) > FTINY &&
424     ((ldot = DOT(wp->rd.mo.pnorm,ldir)) > 0) == hitfront) {
425     /*
426     * Compute diffuse reflection coefficient for source.
427     */
428     copyscolor(sctmp, wp->rd.scol);
429     dtmp = fabs(ldot) * omega * (1.0/PI) * fresadj;
430     scalescolor(sctmp, dtmp);
431     saddscolor(scval, sctmp);
432     }
433     if (sintens(wp->td.scol) > FTINY &&
434     ((ldot = DOT(wp->td.mo.pnorm,ldir)) > 0) ^ hitfront) {
435     /*
436     * Compute diffuse transmission coefficient for source.
437     */
438     copyscolor(sctmp, wp->td.scol);
439     dtmp = fabs(ldot) * omega * (1.0/PI) * fresadj;
440     scalescolor(sctmp, dtmp);
441     saddscolor(scval, sctmp);
442     }
443     #if 0 /* XXX not yet implemented */
444     if (ambRayInPmap(wp->rp))
445     return; /* specular accounted for in photon map */
446     #endif
447     if ((wp->specfl & (SP_REFL|SP_RPURE)) == SP_REFL &&
448     ((ldot = DOT(wp->rs.mo.pnorm,ldir)) > 0) == hitfront) {
449     /*
450     * Compute specular reflection coefficient for source using
451     * anisotropic Gaussian distribution model.
452     */
453     /* add source width if flat */
454     if (wp->specfl & SP_FLAT)
455     au2 = av2 = omega * (0.25/PI);
456     else
457     au2 = av2 = 0.0;
458     au2 += wp->rs.u_alpha*wp->rs.u_alpha;
459     av2 += wp->rs.v_alpha*wp->rs.v_alpha;
460     /* half vector */
461     VSUB(h, ldir, wp->rp->rdir);
462     /* ellipse */
463     dtmp1 = DOT(wp->rs.u, h);
464     dtmp1 *= dtmp1 / au2;
465     dtmp2 = DOT(wp->rs.v, h);
466     dtmp2 *= dtmp2 / av2;
467     /* W-G-M-D model */
468     dtmp = DOT(wp->rs.mo.pnorm, h);
469     dtmp *= dtmp;
470     dtmp1 = (dtmp1 + dtmp2) / dtmp;
471     dtmp = exp(-dtmp1) * DOT(h,h) /
472     (PI * dtmp*dtmp * sqrt(au2*av2));
473    
474     if (dtmp > FTINY) { /* worth using? */
475     copyscolor(sctmp, wp->rs.scol);
476     dtmp *= fabs(ldot) * omega;
477     scalescolor(sctmp, dtmp);
478     saddscolor(scval, sctmp);
479     }
480     }
481     if ((wp->specfl & (SP_TRAN|SP_TPURE)) == SP_TRAN &&
482     ((ldot = DOT(wp->ts.mo.pnorm,ldir)) > 0) ^ hitfront) {
483     /*
484     * Compute specular transmission coefficient for source.
485     */
486     /* roughness + source */
487     au2 = av2 = omega * (1.0/PI);
488     au2 += wp->ts.u_alpha*wp->ts.u_alpha;
489     av2 += wp->ts.v_alpha*wp->ts.v_alpha;
490     /* "half vector" */
491     VSUB(h, ldir, wp->prdir);
492     dtmp = DOT(h,h);
493     if (dtmp > FTINY*FTINY) {
494     dtmp1 = DOT(h,wp->ts.mo.pnorm);
495     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
496     }
497     if (dtmp > FTINY*FTINY) {
498     dtmp1 = DOT(h,wp->ts.u);
499     dtmp1 *= dtmp1 / au2;
500     dtmp2 = DOT(h,wp->ts.v);
501     dtmp2 *= dtmp2 / av2;
502     dtmp = (dtmp1 + dtmp2) / dtmp;
503     dtmp = exp(-dtmp);
504     } else
505     dtmp = 1.0;
506     /* Gaussian */
507     dtmp *= (1.0/PI) * sqrt(-ldot/(wp->ts.mo.pdot*au2*av2));
508    
509     if (dtmp > FTINY) { /* worth using? */
510     copyscolor(sctmp, wp->ts.scol);
511     dtmp *= omega;
512     scalescolor(sctmp, dtmp);
513     saddscolor(scval, sctmp);
514     }
515     }
516     }
517    
518     /* color a ray that hit a programmable WGMD material */
519     int
520     m_wgmdf(OBJREC *m, RAY *r)
521     {
522     RAY lr;
523     WGMDDAT wd;
524     SCOLOR sctmp;
525     FVECT anorm;
526     int i;
527    
528     if (!backvis & (r->rod < 0.0)) {
529     raytrans(r);
530     return(1); /* backside invisible */
531     }
532     if ((m->oargs.nsargs < 13) | (m->oargs.nfargs < 9))
533     objerror(m, USER, "bad number of arguments");
534 greg 2.2
535     if (r->crtype & SHADOW && !strcmp(m->oargs.sarg[5], "0"))
536     return(1); /* first shadow test */
537 greg 2.1 clr_comps(&wd);
538     wd.rp = r;
539     wd.mtp = m;
540     wd.mf = getfunc(m, 12, 0xEEE, 1);
541 greg 2.5 set_dcomp(&wd, 0); /* gets main modifier */
542     setWGMDfunc(&wd.rd.mo, &wd); /* get local u vector */
543 greg 2.1 errno = 0;
544     for (i = 0; i < 3; i++)
545     wd.ulocal[i] = evalue(wd.mf->ep[6+i]);
546     if ((errno == EDOM) | (errno == ERANGE))
547     wd.ulocal[0] = wd.ulocal[1] = wd.ulocal[2] = 0.0;
548     else if (wd.mf->fxp != &unitxf)
549     multv3(wd.ulocal, wd.ulocal, wd.mf->fxp->xfm);
550    
551     set_scomp(&wd, 1); /* sets SP_TPURE */
552     if (r->crtype & SHADOW && !(wd.specfl & SP_TPURE))
553 greg 2.2 return(1); /* second shadow test */
554     set_dcomp(&wd, 1);
555 greg 2.1 set_scomp(&wd, 0);
556 greg 2.8 wd.specfl |= SP_FLAT*(!wd.rs.mo.hastexture &&
557     r->ro != NULL && isflat(r->ro->otype));
558 greg 2.1 /* apply Fresnel adjustments? */
559     if (wd.specfl & SP_RPURE && pbright(wd.rs.scol) >= FRESTHRESH) {
560     const double fest = FRESNE(fabs(wd.rs.mo.pdot));
561     for (i = NCSAMP; i--; )
562     wd.rs.scol[i] += fest*(1. - wd.rs.scol[i]);
563 greg 2.4 scalescolor(wd.rd.scol, 1.-fest);
564 greg 2.1 scalescolor(wd.ts.scol, 1.-fest);
565     scalescolor(wd.td.scol, 1.-fest);
566     }
567     /* check specular thresholds */
568     wd.specfl |= SP_RBLT*((wd.specfl & (SP_REFL|SP_RPURE)) == SP_REFL &&
569     specthresh >= pbright(wd.rs.scol)-FTINY);
570     wd.specfl |= SP_TBLT*((wd.specfl & (SP_TRAN|SP_TPURE)) == SP_TRAN &&
571     specthresh >= pbright(wd.ts.scol)-FTINY);
572     /* get through direction */
573     if (wd.specfl & SP_TRAN && wd.ts.mo.hastexture &&
574     !(r->crtype & (SHADOW|AMBIENT))) {
575     for (i = 0; i < 3; i++) /* perturb */
576     wd.prdir[i] = r->rdir[i] - wd.ts.mo.pnorm[i] + r->ron[i];
577     if ((DOT(wd.prdir,r->ron) > 0) ^ (r->rod > 0))
578     normalize(wd.prdir); /* OK */
579     else /* too much */
580     VCOPY(wd.prdir, r->rdir);
581     } else
582     VCOPY(wd.prdir, r->rdir);
583     /* transmitted view ray? */
584     if ((wd.specfl & (SP_TRAN|SP_TPURE|SP_TBLT)) == (SP_TRAN|SP_TPURE) &&
585     rayorigin(&lr, TRANS, r, wd.ts.scol) == 0) {
586     VCOPY(lr.rdir, wd.prdir);
587     rayvalue(&lr);
588     smultscolor(lr.rcol, lr.rcoef);
589     saddscolor(r->rcol, lr.rcol);
590     if (scolor_mean(wd.ts.scol) >= 0.999) {
591     /* completely transparent */
592     smultscolor(lr.mcol, lr.rcoef);
593     copyscolor(r->mcol, lr.mcol);
594     r->rmt = r->rot + lr.rmt;
595     r->rxt = r->rot + lr.rxt;
596     } else if (pbright(wd.ts.scol) >
597     pbright(wd.td.scol) + pbright(wd.rd.scol))
598     r->rxt = r->rot + raydistance(&lr);
599     }
600     if (r->crtype & SHADOW)
601     return(1); /* the rest is shadow */
602     /* mirror ray? */
603     if ((wd.specfl & (SP_REFL|SP_RPURE|SP_RBLT)) == (SP_REFL|SP_RPURE) &&
604     rayorigin(&lr, REFLECTED, r, wd.rs.scol) == 0) {
605     VSUM(lr.rdir, r->rdir, wd.rs.mo.pnorm, 2.*wd.rs.mo.pdot);
606     /* fall back if would penetrate */
607     if (wd.rs.mo.hastexture &&
608     (DOT(lr.rdir,r->ron) > 0) ^ (r->rod > 0))
609     VSUM(lr.rdir, r->rdir, r->ron, 2.*r->rod);
610     checknorm(lr.rdir);
611     rayvalue(&lr);
612     smultscolor(lr.rcol, lr.rcoef);
613     copyscolor(r->mcol, lr.rcol);
614     saddscolor(r->rcol, lr.rcol);
615     r->rmt = r->rot;
616 greg 2.8 if (wd.specfl & SP_FLAT && r->crtype & AMBIENT)
617 greg 2.1 r->rmt += raydistance(&lr);
618     }
619     if (wd.specfl & (SP_REFL|SP_TRAN)) /* specularly scattered rays */
620     agaussamp(&wd); /* checks *BLT flags */
621    
622     if (sintens(wd.rd.scol) > FTINY) { /* ambient from this side */
623     if (r->rod > 0) {
624     VCOPY(anorm, wd.rd.mo.pnorm);
625     } else {
626     anorm[0] = -wd.rd.mo.pnorm[0];
627     anorm[1] = -wd.rd.mo.pnorm[1];
628     anorm[2] = -wd.rd.mo.pnorm[2];
629     }
630     copyscolor(sctmp, wd.rd.scol);
631     if (wd.specfl & SP_RBLT) /* add in specular as well? */
632     saddscolor(sctmp, wd.rs.scol);
633     multambient(sctmp, r, anorm);
634     saddscolor(r->rcol, sctmp); /* add to returned color */
635     }
636     if (sintens(wd.td.scol) > FTINY) { /* ambient from other side */
637     if (r->rod > 0) {
638     anorm[0] = -wd.td.mo.pnorm[0];
639     anorm[1] = -wd.td.mo.pnorm[1];
640     anorm[2] = -wd.td.mo.pnorm[2];
641     } else {
642     VCOPY(anorm, wd.td.mo.pnorm);
643     }
644     copyscolor(sctmp, wd.td.scol);
645     if (wd.specfl & SP_TBLT) /* add in specular as well? */
646     saddscolor(sctmp, wd.ts.scol)
647     multambient(sctmp, r, anorm);
648     saddscolor(r->rcol, sctmp);
649     }
650     direct(r, dirwgmdf, &wd); /* add direct component last */
651     return(1);
652     }