1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: m_mirror.c,v 2.24 2025/05/29 16:42:28 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Routines for mirror material supporting virtual light sources |
6 |
*/ |
7 |
|
8 |
#include "copyright.h" |
9 |
|
10 |
#include "ray.h" |
11 |
#include "otypes.h" |
12 |
#include "otspecial.h" |
13 |
#include "rtotypes.h" |
14 |
#include "source.h" |
15 |
|
16 |
/* |
17 |
* The real arguments for MAT_MIRROR are simply: |
18 |
* |
19 |
* 3 rrefl grefl brefl |
20 |
* |
21 |
* Additionally, the user may specify a single string argument |
22 |
* which is interpreted as the name of the material to use |
23 |
* instead of the mirror if the ray being considered is not |
24 |
* part of the direct calculation. |
25 |
*/ |
26 |
|
27 |
static int mir_proj(MAT4 pm, OBJREC *o, SRCREC *s, int n); |
28 |
static void mirrorproj(MAT4 m, FVECT nv, double offs); |
29 |
|
30 |
VSMATERIAL mirror_vs = {mir_proj, 1}; |
31 |
|
32 |
|
33 |
int |
34 |
m_mirror( /* shade mirrored ray */ |
35 |
OBJREC *m, |
36 |
RAY *r |
37 |
) |
38 |
{ |
39 |
/* check arguments */ |
40 |
if (m->oargs.nfargs != 3 || m->oargs.nsargs > 1) |
41 |
objerror(m, USER, "bad number of arguments"); |
42 |
/* check for substitute material */ |
43 |
/* but avoid double-counting */ |
44 |
if (m->oargs.nsargs > 0 && |
45 |
(r->rsrc < 0 || source[r->rsrc].so != r->ro)) { |
46 |
int passOK = (r->rod < 0.) | |
47 |
!(r->crtype & (AMBIENT|SPECULAR)); |
48 |
if (strcmp(m->oargs.sarg[0], VOIDID)) { |
49 |
OBJECT altmod = lastmod(objndx(m), m->oargs.sarg[0]); |
50 |
OBJREC *altmat; |
51 |
if (passOK) /* no double-count hazard? */ |
52 |
return(rayshade(r, altmod)); |
53 |
if (altmod == OVOID || /* else check alternate type */ |
54 |
(altmat = findmaterial(objptr(altmod))) == NULL) |
55 |
return(0); |
56 |
if (istransp(altmat)) /* pass "transparent" materials */ |
57 |
return(rayshade(r, altmod)); |
58 |
} else if (passOK) { |
59 |
raytrans(r); /* "safe" void passage */ |
60 |
return(1); |
61 |
} |
62 |
} |
63 |
/* check for bad source ray */ |
64 |
if (r->rsrc >= 0 && source[r->rsrc].so != r->ro) |
65 |
return(1); |
66 |
|
67 |
if (r->rod < 0.) { /* back is black */ |
68 |
if (!backvis) |
69 |
raytrans(r); /* unless back visibility is off */ |
70 |
return(1); |
71 |
} |
72 |
{ /* new context for stack memory */ |
73 |
SCOLOR mcolor; |
74 |
RAY nr; |
75 |
int rpure = 1; |
76 |
int i; |
77 |
/* get modifiers */ |
78 |
raytexture(r, m->omod); |
79 |
/* assign material color */ |
80 |
setscolor(mcolor, m->oargs.farg[0], |
81 |
m->oargs.farg[1], |
82 |
m->oargs.farg[2]); |
83 |
smultscolor(mcolor, r->pcol); |
84 |
/* compute reflected ray */ |
85 |
if (r->rsrc >= 0) { /* relayed light source */ |
86 |
rayorigin(&nr, REFLECTED, r, mcolor); |
87 |
/* ignore textures */ |
88 |
for (i = 0; i < 3; i++) |
89 |
nr.rdir[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
90 |
/* source we're aiming for next */ |
91 |
nr.rsrc = source[r->rsrc].sa.sv.sn; |
92 |
} else { /* ordinary reflection */ |
93 |
FVECT pnorm; |
94 |
double pdot; |
95 |
|
96 |
if (rayorigin(&nr, REFLECTED, r, mcolor) < 0) |
97 |
return(1); |
98 |
if (!(r->crtype & AMBIENT) && |
99 |
DOT(r->pert,r->pert) > FTINY*FTINY) { |
100 |
pdot = raynormal(pnorm, r); /* use textures */ |
101 |
for (i = 0; i < 3; i++) |
102 |
nr.rdir[i] = r->rdir[i] + 2.*pdot*pnorm[i]; |
103 |
rpure = 0; |
104 |
} |
105 |
/* check for penetration */ |
106 |
if (rpure || DOT(nr.rdir, r->ron) <= FTINY) |
107 |
for (i = 0; i < 3; i++) |
108 |
nr.rdir[i] = r->rdir[i] + 2.*r->rod*r->ron[i]; |
109 |
} |
110 |
checknorm(nr.rdir); |
111 |
rayvalue(&nr); |
112 |
smultscolor(nr.rcol, nr.rcoef); |
113 |
copyscolor(r->mcol, nr.rcol); |
114 |
saddscolor(r->rcol, nr.rcol); |
115 |
r->rmt = r->rot; |
116 |
if (rpure && r->ro != NULL && isflat(r->ro->otype)) |
117 |
r->rmt += raydistance(&nr); |
118 |
} /* end stack context */ |
119 |
return(1); |
120 |
} |
121 |
|
122 |
|
123 |
static int |
124 |
mir_proj( /* compute a mirror's projection */ |
125 |
MAT4 pm, |
126 |
OBJREC *o, |
127 |
SRCREC *s, |
128 |
int n |
129 |
) |
130 |
{ |
131 |
double corr = 1.; |
132 |
FVECT nv, sc; |
133 |
double od, offs; |
134 |
int i; |
135 |
/* get surface normal and offset */ |
136 |
offs = od = getplaneq(nv, o); |
137 |
if (s->sflags & SDISTANT) |
138 |
offs = 0.; |
139 |
/* check for extreme point behind */ |
140 |
if (s->sflags & SCIR) { |
141 |
if (s->sflags & (SFLAT|SDISTANT)) |
142 |
corr = 1.12837917; /* correct setflatss() */ |
143 |
else |
144 |
corr = 1.0/0.7236; /* correct sphsetsrc() */ |
145 |
} |
146 |
VCOPY(sc, s->sloc); |
147 |
for (i = s->sflags & SFLAT ? SV : SW; i >= 0; i--) |
148 |
if (DOT(nv, s->ss[i]) > offs) |
149 |
VSUM(sc, sc, s->ss[i], corr); |
150 |
else |
151 |
VSUM(sc, sc, s->ss[i], -corr); |
152 |
if (DOT(sc, nv) <= offs+FTINY) |
153 |
return(0); |
154 |
/* everything OK -- compute projection */ |
155 |
mirrorproj(pm, nv, od); |
156 |
return(1); |
157 |
} |
158 |
|
159 |
|
160 |
static void |
161 |
mirrorproj( /* get mirror projection for surface */ |
162 |
MAT4 m, |
163 |
FVECT nv, |
164 |
double offs |
165 |
) |
166 |
{ |
167 |
int i, j; |
168 |
/* assign matrix */ |
169 |
setident4(m); |
170 |
for (j = 0; j < 3; j++) { |
171 |
for (i = 0; i < 3; i++) |
172 |
m[i][j] -= 2.*nv[i]*nv[j]; |
173 |
m[3][j] = 2.*offs*nv[j]; |
174 |
} |
175 |
} |