/* Copyright (c) 1991 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * Routines for light-redirecting materials and * their associated virtual light sources */ #include "ray.h" #include "otypes.h" #include "source.h" #include "func.h" /* * The arguments for MAT_DIRECT1 are: * * 5+ coef1 dx1 dy1 dz1 funcfile transform.. * 0 * n A1 A2 .. An * * The arguments for MAT_DIRECT2 are: * * 9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform.. * 0 * n A1 A2 .. An */ int dir_proj(); VSMATERIAL direct1_vs = {dir_proj, 1}; VSMATERIAL direct2_vs = {dir_proj, 2}; #define getdfunc(m) ( (m)->otype == MAT_DIRECT1 ? \ getfunc(m, 4, 0xf, 1) : \ getfunc(m, 8, 0xff, 1) ) m_direct(m, r) /* shade redirected ray */ register OBJREC *m; register RAY *r; { /* check if source ray */ if (r->rsrc >= 0 && source[r->rsrc].so != r->ro) return; /* got the wrong guy */ /* compute first projection */ if (m->otype == MAT_DIRECT1 || (r->rsrc < 0 || source[r->rsrc].sa.sv.pn == 0)) redirect(m, r, 0); /* compute second projection */ if (m->otype == MAT_DIRECT2 && (r->rsrc < 0 || source[r->rsrc].sa.sv.pn == 1)) redirect(m, r, 1); } redirect(m, r, n) /* compute n'th ray redirection */ OBJREC *m; RAY *r; int n; { MFUNC *mf; register EPNODE **va; FVECT nsdir; RAY nr; double coef; register int j; /* set up function */ mf = getdfunc(m); setfunc(m, r); /* assign direction variable */ if (r->rsrc >= 0) { register SRCREC *sp = source + source[r->rsrc].sa.sv.sn; if (sp->sflags & SDISTANT) VCOPY(nsdir, sp->sloc); else { for (j = 0; j < 3; j++) nsdir[j] = sp->sloc[j] - r->rop[j]; normalize(nsdir); } if (r->rox != NULL) multv3(nsdir, nsdir, r->rox->b.xfm); if (mf->b != &unitxf) multv3(nsdir, nsdir, mf->b->xfm); } else nsdir[0] = nsdir[1] = nsdir[2] = 0.0; varset("DxA", '=', nsdir[0]); varset("DyA", '=', nsdir[1]); varset("DzA", '=', nsdir[2]); /* compute coefficient */ errno = 0; va = mf->ep + 4*n; coef = evalue(va[0]); if (errno) goto computerr; if (coef <= FTINY || rayorigin(&nr, r, TRANS, coef) < 0) return(0); va++; /* compute direction */ for (j = 0; j < 3; j++) { nr.rdir[j] = evalue(va[j]); if (errno) goto computerr; } if (mf->f != &unitxf) multv3(nr.rdir, nr.rdir, mf->f->xfm); if (r->rox != NULL) multv3(nr.rdir, nr.rdir, r->rox->f.xfm); if (normalize(nr.rdir) == 0.0) goto computerr; /* compute value */ if (r->rsrc >= 0) nr.rsrc = source[r->rsrc].sa.sv.sn; rayvalue(&nr); scalecolor(nr.rcol, coef); addcolor(r->rcol, nr.rcol); return(1); computerr: objerror(m, WARNING, "compute error"); return(-1); } dir_proj(pm, o, s, n) /* compute a director's projection */ MAT4 pm; OBJREC *o; SRCREC *s; int n; { RAY tr; OBJREC *m; MFUNC *mf; EPNODE **va; FVECT cent, newdir, nv, h; double coef, olddot, newdot, od; register int i, j; /* initialize test ray */ getmaxdisk(cent, o); if (s->sflags & SDISTANT) for (i = 0; i < 3; i++) { tr.rdir[i] = -s->sloc[i]; tr.rorg[i] = cent[i] - tr.rdir[i]; } else { for (i = 0; i < 3; i++) { tr.rdir[i] = cent[i] - s->sloc[i]; tr.rorg[i] = s->sloc[i]; } if (normalize(tr.rdir) == 0.0) return(0); /* at source! */ } od = getplaneq(nv, o); olddot = DOT(tr.rdir, nv); if (olddot <= FTINY && olddot >= -FTINY) return(0); /* old dir parallels plane */ rayorigin(&tr, NULL, PRIMARY, 1.0); if (!(*ofun[o->otype].funp)(o, &tr)) return(0); /* no intersection! */ /* compute redirection */ m = vsmaterial(o); mf = getdfunc(m); setfunc(m, &tr); varset("DxA", '=', 0.0); varset("DyA", '=', 0.0); varset("DzA", '=', 0.0); errno = 0; va = mf->ep + 4*n; coef = evalue(va[0]); if (errno) goto computerr; if (coef <= FTINY) return(0); /* insignificant */ va++; for (i = 0; i < 3; i++) { newdir[i] = evalue(va[i]); if (errno) goto computerr; } if (mf->f != &unitxf) multv3(newdir, newdir, mf->f->xfm); /* normalization unnecessary */ newdot = DOT(newdir, nv); if (newdot <= FTINY && newdot >= -FTINY) return(0); /* new dir parallels plane */ /* everything OK -- compute shear */ for (i = 0; i < 3; i++) h[i] = newdir[i]/newdot - tr.rdir[i]/olddot; setident4(pm); for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) pm[i][j] += nv[i]*h[j]; pm[3][j] = -od*h[j]; } if (newdot > 0.0 ^ olddot > 0.0) /* add mirroring */ for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) pm[i][j] -= 2.*nv[i]*nv[j]; pm[3][j] += 2.*od*nv[j]; } return(1); computerr: objerror(m, WARNING, "projection compute error"); return(0); }