1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: m_direct.c,v 2.17 2023/11/15 18:02:53 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Routines for light-redirecting materials and |
6 |
* their associated virtual light sources |
7 |
*/ |
8 |
|
9 |
#include "copyright.h" |
10 |
|
11 |
#include "ray.h" |
12 |
#include "otypes.h" |
13 |
#include "rtotypes.h" |
14 |
#include "source.h" |
15 |
#include "func.h" |
16 |
|
17 |
/* |
18 |
* The arguments for MAT_DIRECT1 are: |
19 |
* |
20 |
* 5+ coef1 dx1 dy1 dz1 funcfile transform.. |
21 |
* 0 |
22 |
* n A1 A2 .. An |
23 |
* |
24 |
* The arguments for MAT_DIRECT2 are: |
25 |
* |
26 |
* 9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform.. |
27 |
* 0 |
28 |
* n A1 A2 .. An |
29 |
*/ |
30 |
|
31 |
static int redirect(OBJREC *m, RAY *r, int n); |
32 |
static int dir_proj(MAT4 pm, OBJREC *o, SRCREC *s, int n); |
33 |
|
34 |
VSMATERIAL direct1_vs = {dir_proj, 1}; |
35 |
VSMATERIAL direct2_vs = {dir_proj, 2}; |
36 |
|
37 |
#define getdfunc(m) ( (m)->otype == MAT_DIRECT1 ? \ |
38 |
getfunc(m, 4, 0xf, 1) : \ |
39 |
getfunc(m, 8, 0xff, 1) ) |
40 |
|
41 |
|
42 |
int |
43 |
m_direct( /* shade redirected ray */ |
44 |
OBJREC *m, |
45 |
RAY *r |
46 |
) |
47 |
{ |
48 |
/* check if source ray */ |
49 |
if (r->rsrc >= 0 && source[r->rsrc].so != r->ro) |
50 |
return(1); /* got the wrong guy */ |
51 |
/* compute first projection */ |
52 |
if (m->otype == MAT_DIRECT1 || |
53 |
(r->rsrc < 0 || source[r->rsrc].sa.sv.pn == 0)) |
54 |
redirect(m, r, 0); |
55 |
/* compute second projection */ |
56 |
if (m->otype == MAT_DIRECT2 && |
57 |
(r->rsrc < 0 || source[r->rsrc].sa.sv.pn == 1)) |
58 |
redirect(m, r, 1); |
59 |
return(1); |
60 |
} |
61 |
|
62 |
|
63 |
static int |
64 |
redirect( /* compute n'th ray redirection */ |
65 |
OBJREC *m, |
66 |
RAY *r, |
67 |
int n |
68 |
) |
69 |
{ |
70 |
MFUNC *mf; |
71 |
EPNODE **va; |
72 |
FVECT nsdir; |
73 |
RAY nr; |
74 |
double coef; |
75 |
int j; |
76 |
/* set up function */ |
77 |
mf = getdfunc(m); |
78 |
setfunc(m, r); |
79 |
/* assign direction variable */ |
80 |
if (r->rsrc >= 0) { |
81 |
SRCREC *sp = source + source[r->rsrc].sa.sv.sn; |
82 |
|
83 |
if (sp->sflags & SDISTANT) |
84 |
VCOPY(nsdir, sp->sloc); |
85 |
else { |
86 |
for (j = 0; j < 3; j++) |
87 |
nsdir[j] = sp->sloc[j] - r->rop[j]; |
88 |
normalize(nsdir); |
89 |
} |
90 |
multv3(nsdir, nsdir, funcxf.xfm); |
91 |
varset("DxA", '=', nsdir[0]/funcxf.sca); |
92 |
varset("DyA", '=', nsdir[1]/funcxf.sca); |
93 |
varset("DzA", '=', nsdir[2]/funcxf.sca); |
94 |
} else { |
95 |
varset("DxA", '=', 0.0); |
96 |
varset("DyA", '=', 0.0); |
97 |
varset("DzA", '=', 0.0); |
98 |
} |
99 |
/* compute coefficient */ |
100 |
errno = 0; |
101 |
va = mf->ep + 4*n; |
102 |
coef = evalue(va[0]); |
103 |
if ((errno == EDOM) | (errno == ERANGE)) |
104 |
goto computerr; |
105 |
setscolor(nr.rcoef, coef, coef, coef); |
106 |
if (rayorigin(&nr, TRANS, r, nr.rcoef) < 0) |
107 |
return(0); |
108 |
va++; /* compute direction */ |
109 |
for (j = 0; j < 3; j++) { |
110 |
nr.rdir[j] = evalue(va[j]); |
111 |
if ((errno == EDOM) | (errno == ERANGE)) |
112 |
goto computerr; |
113 |
} |
114 |
if (mf->fxp != &unitxf) |
115 |
multv3(nr.rdir, nr.rdir, mf->fxp->xfm); |
116 |
if (r->rox != NULL) |
117 |
multv3(nr.rdir, nr.rdir, r->rox->f.xfm); |
118 |
if (normalize(nr.rdir) == 0.0) |
119 |
goto computerr; |
120 |
/* compute value */ |
121 |
if (r->rsrc >= 0) |
122 |
nr.rsrc = source[r->rsrc].sa.sv.sn; |
123 |
rayvalue(&nr); |
124 |
smultscolor(nr.rcol, nr.rcoef); |
125 |
saddscolor(r->rcol, nr.rcol); |
126 |
if (r->ro != NULL && isflat(r->ro->otype)) |
127 |
r->rxt = r->rot + raydistance(&nr); |
128 |
return(1); |
129 |
computerr: |
130 |
objerror(m, WARNING, "compute error"); |
131 |
return(-1); |
132 |
} |
133 |
|
134 |
|
135 |
static int |
136 |
dir_proj( /* compute a director's projection */ |
137 |
MAT4 pm, |
138 |
OBJREC *o, |
139 |
SRCREC *s, |
140 |
int n |
141 |
) |
142 |
{ |
143 |
RAY tr; |
144 |
OBJREC *m; |
145 |
MFUNC *mf; |
146 |
EPNODE **va; |
147 |
FVECT cent, newdir, nv, h; |
148 |
double coef, olddot, newdot, od; |
149 |
int i, j; |
150 |
/* initialize test ray */ |
151 |
getmaxdisk(cent, o); |
152 |
if (s->sflags & SDISTANT) |
153 |
for (i = 0; i < 3; i++) { |
154 |
tr.rdir[i] = -s->sloc[i]; |
155 |
tr.rorg[i] = cent[i] - tr.rdir[i]; |
156 |
} |
157 |
else { |
158 |
for (i = 0; i < 3; i++) { |
159 |
tr.rdir[i] = cent[i] - s->sloc[i]; |
160 |
tr.rorg[i] = s->sloc[i]; |
161 |
} |
162 |
if (normalize(tr.rdir) == 0.0) |
163 |
return(0); /* at source! */ |
164 |
} |
165 |
od = getplaneq(nv, o); |
166 |
olddot = DOT(tr.rdir, nv); |
167 |
if (olddot <= FTINY && olddot >= -FTINY) |
168 |
return(0); /* old dir parallels plane */ |
169 |
tr.rmax = 0.0; |
170 |
rayorigin(&tr, PRIMARY, NULL, NULL); |
171 |
if (!(*ofun[o->otype].funp)(o, &tr)) |
172 |
return(0); /* no intersection! */ |
173 |
/* compute redirection */ |
174 |
m = vsmaterial(o); |
175 |
mf = getdfunc(m); |
176 |
setfunc(m, &tr); |
177 |
varset("DxA", '=', 0.0); |
178 |
varset("DyA", '=', 0.0); |
179 |
varset("DzA", '=', 0.0); |
180 |
errno = 0; |
181 |
va = mf->ep + 4*n; |
182 |
coef = evalue(va[0]); |
183 |
if ((errno == EDOM) | (errno == ERANGE)) |
184 |
goto computerr; |
185 |
if (coef <= FTINY) |
186 |
return(0); /* insignificant */ |
187 |
va++; |
188 |
for (i = 0; i < 3; i++) { |
189 |
newdir[i] = evalue(va[i]); |
190 |
if ((errno == EDOM) | (errno == ERANGE)) |
191 |
goto computerr; |
192 |
} |
193 |
if (mf->fxp != &unitxf) |
194 |
multv3(newdir, newdir, mf->fxp->xfm); |
195 |
/* normalization unnecessary */ |
196 |
newdot = DOT(newdir, nv); |
197 |
if (newdot <= FTINY && newdot >= -FTINY) |
198 |
return(0); /* new dir parallels plane */ |
199 |
/* everything OK -- compute shear */ |
200 |
for (i = 0; i < 3; i++) |
201 |
h[i] = newdir[i]/newdot - tr.rdir[i]/olddot; |
202 |
setident4(pm); |
203 |
for (j = 0; j < 3; j++) { |
204 |
for (i = 0; i < 3; i++) |
205 |
pm[i][j] += nv[i]*h[j]; |
206 |
pm[3][j] = -od*h[j]; |
207 |
} |
208 |
if ((newdot > 0.0) ^ (olddot > 0.0)) /* add mirroring */ |
209 |
for (j = 0; j < 3; j++) { |
210 |
for (i = 0; i < 3; i++) |
211 |
pm[i][j] -= 2.*nv[i]*nv[j]; |
212 |
pm[3][j] += 2.*od*nv[j]; |
213 |
} |
214 |
return(1); |
215 |
computerr: |
216 |
objerror(m, WARNING, "projection compute error"); |
217 |
return(0); |
218 |
} |