/* Copyright (c) 1991 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * Routines for light-redirecting materials and * their associated virtual light sources */ #include "ray.h" #include "otypes.h" #include "source.h" /* * The arguments for MAT_DIRECT1 are: * * 5+ coef1 dx1 dy1 dz1 funcfile transform.. * 0 * n A1 A2 .. An * * The arguments for MAT_DIRECT2 are: * * 9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform.. * 0 * n A1 A2 .. An */ extern double varvalue(); int dir_proj(); VSMATERIAL direct1_vs = {dir_proj, 1}; VSMATERIAL direct2_vs = {dir_proj, 2}; m_direct(m, r) /* shade redirected ray */ register OBJREC *m; register RAY *r; { /* check if source ray */ if (r->rsrc >= 0 && source[r->rsrc].so != r->ro) return; /* got the wrong guy */ dir_check(m); /* compute first projection */ if (m->otype == MAT_DIRECT1 || (r->rsrc < 0 || source[r->rsrc].sa.sv.pn == 0)) redirect(m, r, 0); /* compute second projection */ if (m->otype == MAT_DIRECT2 && (r->rsrc < 0 || source[r->rsrc].sa.sv.pn == 1)) redirect(m, r, 1); } redirect(m, r, n) /* compute n'th ray redirection */ OBJREC *m; RAY *r; int n; { register char **sa; RAY nr; double coef; register int j; /* set up function */ setfunc(m, r); sa = m->oargs.sarg + 4*n; /* compute coefficient */ errno = 0; coef = varvalue(sa[0]); if (errno) goto computerr; if (coef <= FTINY || rayorigin(&nr, r, TRANS, coef) < 0) return(0); /* compute direction */ errno = 0; for (j = 0; j < 3; j++) nr.rdir[j] = varvalue(sa[j+1]); if (errno || normalize(nr.rdir) == 0.0) goto computerr; /* compute value */ if (r->rsrc >= 0) nr.rsrc = source[r->rsrc].sa.sv.sn; rayvalue(&nr); scalecolor(nr.rcol, coef); addcolor(r->rcol, nr.rcol); return(1); computerr: objerror(m, WARNING, "compute error"); return(-1); } dir_proj(pm, o, s, n) /* compute a director's projection */ MAT4 pm; OBJREC *o; SRCREC *s; int n; { RAY tr; register OBJREC *m; char **sa; FVECT cent, newdir, nv, h; double olddot, newdot, od; register int i, j; /* get material arguments */ m = objptr(o->omod); dir_check(m); sa = m->oargs.sarg + 4*n; /* initialize test ray */ getmaxdisk(cent, o); if (s->sflags & SDISTANT) for (i = 0; i < 3; i++) { tr.rdir[i] = -s->sloc[i]; tr.rorg[i] = cent[i] - tr.rdir[i]; } else { for (i = 0; i < 3; i++) { tr.rdir[i] = cent[i] - s->sloc[i]; tr.rorg[i] = s->sloc[i]; } if (normalize(tr.rdir) == 0.0) return(0); /* at source! */ } od = getplaneq(nv, o); olddot = DOT(tr.rdir, nv); if (olddot <= FTINY && olddot >= -FTINY) return(0); /* old dir parallels plane */ rayorigin(&tr, NULL, PRIMARY, 1.0); if (!(*ofun[o->otype].funp)(o, &tr)) return(0); /* no intersection! */ /* compute redirection */ setfunc(m, &tr); errno = 0; if (varvalue(sa[0]) <= FTINY) return(0); /* insignificant */ if (errno) goto computerr; for (i = 0; i < 3; i++) newdir[i] = varvalue(sa[i+1]); if (errno) goto computerr; newdot = DOT(newdir, nv); if (newdot <= FTINY && newdot >= -FTINY) return(0); /* new dir parallels plane */ /* everything OK -- compute shear */ for (i = 0; i < 3; i++) h[i] = tr.rdir[i]/olddot + newdir[i]/newdot; setident4(pm); for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) pm[i][j] += nv[i]*h[j]; pm[3][j] = -od*h[j]; } if (newdot > 0.0 ^ olddot > 0.0) /* add mirroring */ for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) pm[i][j] -= 2.*nv[i]*nv[j]; pm[3][j] += 2.*od*nv[j]; } return(1); computerr: objerror(m, WARNING, "projection compute error"); return(0); } static dir_check(m) /* check arguments and load function file */ register OBJREC *m; { register int ff; ff = m->otype == MAT_DIRECT1 ? 4 : 8; if (ff >= m->oargs.nsargs) objerror(m, USER, "too few arguments"); if (!vardefined(m->oargs.sarg[0])) loadfunc(m->oargs.sarg[ff]); }