1 |
/* Copyright (c) 1994 Regents of the University of California */ |
2 |
|
3 |
#ifndef lint |
4 |
static char SCCSid[] = "$SunId$ LBL"; |
5 |
#endif |
6 |
|
7 |
/* |
8 |
* Routines for light-redirecting materials and |
9 |
* their associated virtual light sources |
10 |
*/ |
11 |
|
12 |
#include "ray.h" |
13 |
|
14 |
#include "otypes.h" |
15 |
|
16 |
#include "source.h" |
17 |
|
18 |
#include "func.h" |
19 |
|
20 |
/* |
21 |
* The arguments for MAT_DIRECT1 are: |
22 |
* |
23 |
* 5+ coef1 dx1 dy1 dz1 funcfile transform.. |
24 |
* 0 |
25 |
* n A1 A2 .. An |
26 |
* |
27 |
* The arguments for MAT_DIRECT2 are: |
28 |
* |
29 |
* 9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform.. |
30 |
* 0 |
31 |
* n A1 A2 .. An |
32 |
*/ |
33 |
|
34 |
|
35 |
int dir_proj(); |
36 |
VSMATERIAL direct1_vs = {dir_proj, 1}; |
37 |
VSMATERIAL direct2_vs = {dir_proj, 2}; |
38 |
|
39 |
#define getdfunc(m) ( (m)->otype == MAT_DIRECT1 ? \ |
40 |
getfunc(m, 4, 0xf, 1) : \ |
41 |
getfunc(m, 8, 0xff, 1) ) |
42 |
|
43 |
|
44 |
m_direct(m, r) /* shade redirected ray */ |
45 |
register OBJREC *m; |
46 |
register RAY *r; |
47 |
{ |
48 |
/* check if source ray */ |
49 |
if (r->rsrc >= 0 && source[r->rsrc].so != r->ro) |
50 |
return(1); /* got the wrong guy */ |
51 |
/* compute first projection */ |
52 |
if (m->otype == MAT_DIRECT1 || |
53 |
(r->rsrc < 0 || source[r->rsrc].sa.sv.pn == 0)) |
54 |
redirect(m, r, 0); |
55 |
/* compute second projection */ |
56 |
if (m->otype == MAT_DIRECT2 && |
57 |
(r->rsrc < 0 || source[r->rsrc].sa.sv.pn == 1)) |
58 |
redirect(m, r, 1); |
59 |
return(1); |
60 |
} |
61 |
|
62 |
|
63 |
redirect(m, r, n) /* compute n'th ray redirection */ |
64 |
OBJREC *m; |
65 |
RAY *r; |
66 |
int n; |
67 |
{ |
68 |
MFUNC *mf; |
69 |
register EPNODE **va; |
70 |
FVECT nsdir; |
71 |
RAY nr; |
72 |
double coef; |
73 |
register int j; |
74 |
/* set up function */ |
75 |
mf = getdfunc(m); |
76 |
setfunc(m, r); |
77 |
/* assign direction variable */ |
78 |
if (r->rsrc >= 0) { |
79 |
register SRCREC *sp = source + source[r->rsrc].sa.sv.sn; |
80 |
|
81 |
if (sp->sflags & SDISTANT) |
82 |
VCOPY(nsdir, sp->sloc); |
83 |
else { |
84 |
for (j = 0; j < 3; j++) |
85 |
nsdir[j] = sp->sloc[j] - r->rop[j]; |
86 |
normalize(nsdir); |
87 |
} |
88 |
if (r->rox != NULL) |
89 |
multv3(nsdir, nsdir, r->rox->b.xfm); |
90 |
if (mf->b != &unitxf) |
91 |
multv3(nsdir, nsdir, mf->b->xfm); |
92 |
} else |
93 |
nsdir[0] = nsdir[1] = nsdir[2] = 0.0; |
94 |
varset("DxA", '=', nsdir[0]); |
95 |
varset("DyA", '=', nsdir[1]); |
96 |
varset("DzA", '=', nsdir[2]); |
97 |
/* compute coefficient */ |
98 |
errno = 0; |
99 |
va = mf->ep + 4*n; |
100 |
coef = evalue(va[0]); |
101 |
if (errno) |
102 |
goto computerr; |
103 |
if (coef <= FTINY || rayorigin(&nr, r, TRANS, coef) < 0) |
104 |
return(0); |
105 |
va++; /* compute direction */ |
106 |
for (j = 0; j < 3; j++) { |
107 |
nr.rdir[j] = evalue(va[j]); |
108 |
if (errno) |
109 |
goto computerr; |
110 |
} |
111 |
if (mf->f != &unitxf) |
112 |
multv3(nr.rdir, nr.rdir, mf->f->xfm); |
113 |
if (r->rox != NULL) |
114 |
multv3(nr.rdir, nr.rdir, r->rox->f.xfm); |
115 |
if (normalize(nr.rdir) == 0.0) |
116 |
goto computerr; |
117 |
/* compute value */ |
118 |
if (r->rsrc >= 0) |
119 |
nr.rsrc = source[r->rsrc].sa.sv.sn; |
120 |
rayvalue(&nr); |
121 |
scalecolor(nr.rcol, coef); |
122 |
addcolor(r->rcol, nr.rcol); |
123 |
return(1); |
124 |
computerr: |
125 |
objerror(m, WARNING, "compute error"); |
126 |
return(-1); |
127 |
} |
128 |
|
129 |
|
130 |
dir_proj(pm, o, s, n) /* compute a director's projection */ |
131 |
MAT4 pm; |
132 |
OBJREC *o; |
133 |
SRCREC *s; |
134 |
int n; |
135 |
{ |
136 |
RAY tr; |
137 |
OBJREC *m; |
138 |
MFUNC *mf; |
139 |
EPNODE **va; |
140 |
FVECT cent, newdir, nv, h; |
141 |
double coef, olddot, newdot, od; |
142 |
register int i, j; |
143 |
/* initialize test ray */ |
144 |
getmaxdisk(cent, o); |
145 |
if (s->sflags & SDISTANT) |
146 |
for (i = 0; i < 3; i++) { |
147 |
tr.rdir[i] = -s->sloc[i]; |
148 |
tr.rorg[i] = cent[i] - tr.rdir[i]; |
149 |
} |
150 |
else { |
151 |
for (i = 0; i < 3; i++) { |
152 |
tr.rdir[i] = cent[i] - s->sloc[i]; |
153 |
tr.rorg[i] = s->sloc[i]; |
154 |
} |
155 |
if (normalize(tr.rdir) == 0.0) |
156 |
return(0); /* at source! */ |
157 |
} |
158 |
od = getplaneq(nv, o); |
159 |
olddot = DOT(tr.rdir, nv); |
160 |
if (olddot <= FTINY && olddot >= -FTINY) |
161 |
return(0); /* old dir parallels plane */ |
162 |
tr.rmax = 0.0; |
163 |
rayorigin(&tr, NULL, PRIMARY, 1.0); |
164 |
if (!(*ofun[o->otype].funp)(o, &tr)) |
165 |
return(0); /* no intersection! */ |
166 |
/* compute redirection */ |
167 |
m = vsmaterial(o); |
168 |
mf = getdfunc(m); |
169 |
setfunc(m, &tr); |
170 |
varset("DxA", '=', 0.0); |
171 |
varset("DyA", '=', 0.0); |
172 |
varset("DzA", '=', 0.0); |
173 |
errno = 0; |
174 |
va = mf->ep + 4*n; |
175 |
coef = evalue(va[0]); |
176 |
if (errno) |
177 |
goto computerr; |
178 |
if (coef <= FTINY) |
179 |
return(0); /* insignificant */ |
180 |
va++; |
181 |
for (i = 0; i < 3; i++) { |
182 |
newdir[i] = evalue(va[i]); |
183 |
if (errno) |
184 |
goto computerr; |
185 |
} |
186 |
if (mf->f != &unitxf) |
187 |
multv3(newdir, newdir, mf->f->xfm); |
188 |
/* normalization unnecessary */ |
189 |
newdot = DOT(newdir, nv); |
190 |
if (newdot <= FTINY && newdot >= -FTINY) |
191 |
return(0); /* new dir parallels plane */ |
192 |
/* everything OK -- compute shear */ |
193 |
for (i = 0; i < 3; i++) |
194 |
h[i] = newdir[i]/newdot - tr.rdir[i]/olddot; |
195 |
setident4(pm); |
196 |
for (j = 0; j < 3; j++) { |
197 |
for (i = 0; i < 3; i++) |
198 |
pm[i][j] += nv[i]*h[j]; |
199 |
pm[3][j] = -od*h[j]; |
200 |
} |
201 |
if (newdot > 0.0 ^ olddot > 0.0) /* add mirroring */ |
202 |
for (j = 0; j < 3; j++) { |
203 |
for (i = 0; i < 3; i++) |
204 |
pm[i][j] -= 2.*nv[i]*nv[j]; |
205 |
pm[3][j] += 2.*od*nv[j]; |
206 |
} |
207 |
return(1); |
208 |
computerr: |
209 |
objerror(m, WARNING, "projection compute error"); |
210 |
return(0); |
211 |
} |