ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.61
Committed: Thu Jul 9 17:32:31 2020 UTC (3 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R3
Changes since 2.60: +35 -25 lines
Log Message:
fix(aBSDF): Improved appearance/accuracy in exclusion zone during peak extraction.
Thanks to David Geisler-Moroder for initial idea, implementation and testing.

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.61 static const char RCSid[] = "$Id: m_bsdf.c,v 2.60 2020/06/10 16:00:32 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading for materials with BSDFs taken from XML data files
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11 greg 2.50 #include "otypes.h"
12 greg 2.1 #include "ambient.h"
13     #include "source.h"
14     #include "func.h"
15     #include "bsdf.h"
16     #include "random.h"
17 greg 2.30 #include "pmapmat.h"
18 greg 2.1
19     /*
20 greg 2.50 * Arguments to this material include optional diffuse colors.
21 greg 2.1 * String arguments include the BSDF and function files.
22 greg 2.50 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 greg 2.5 * of translating transmitted rays this distance beneath the surface
24     * (opposite the surface normal) to bypass any intervening geometry.
25     * Translation only affects scattered, non-source-directed samples.
26     * A non-zero thickness has the further side-effect that an unscattered
27 greg 2.35 * (view) ray will pass right through our material, making the BSDF
28     * surface invisible and showing the proxied geometry instead. Thickness
29     * has the further effect of turning off reflection on the reverse side so
30     * rays heading in the opposite direction pass unimpeded through the BSDF
31 greg 2.5 * surface. A paired surface may be placed on the opposide side of
32     * the detail geometry, less than this thickness away, if a two-way
33     * proxy is desired. Note that the sign of the thickness is important.
34     * A positive thickness hides geometry behind the BSDF surface and uses
35     * front reflectance and transmission properties. A negative thickness
36     * hides geometry in front of the surface when rays hit from behind,
37     * and applies only the transmission and backside reflectance properties.
38     * Reflection is ignored on the hidden side, as those rays pass through.
39 greg 2.52 * For the MAT_ABSDF type, we check for a strong "through" component.
40 greg 2.50 * Such a component will cause direct rays to pass through unscattered.
41 greg 2.40 * A separate test prevents over-counting by dropping samples that are
42     * too close to this "through" direction. BSDFs with such a through direction
43     * will also have a view component, meaning they are somewhat see-through.
44 greg 2.52 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 greg 2.50 * type with no strong through component.
46 greg 2.1 * The "up" vector for the BSDF is given by three variables, defined
47     * (along with the thickness) by the named function file, or '.' if none.
48     * Together with the surface normal, this defines the local coordinate
49     * system for the BSDF.
50     * We do not reorient the surface, so if the BSDF has no back-side
51 greg 2.5 * reflectance and none is given in the real arguments, a BSDF surface
52     * with zero thickness will appear black when viewed from behind
53 greg 2.35 * unless backface visibility is on, when it becomes invisible.
54 greg 2.5 * The diffuse arguments are added to components in the BSDF file,
55 greg 2.1 * not multiplied. However, patterns affect this material as a multiplier
56     * on everything except non-diffuse reflection.
57     *
58 greg 2.52 * Arguments for MAT_ABSDF are:
59 greg 2.50 * 5+ BSDFfile ux uy uz funcfile transform
60     * 0
61     * 0|3|6|9 rdf gdf bdf
62     * rdb gdb bdb
63     * rdt gdt bdt
64     *
65 greg 2.1 * Arguments for MAT_BSDF are:
66     * 6+ thick BSDFfile ux uy uz funcfile transform
67     * 0
68 greg 2.8 * 0|3|6|9 rdf gdf bdf
69 greg 2.1 * rdb gdb bdb
70     * rdt gdt bdt
71     */
72    
73 greg 2.4 /*
74     * Note that our reverse ray-tracing process means that the positions
75     * of incoming and outgoing vectors may be reversed in our calls
76 greg 2.35 * to the BSDF library. This is usually fine, since the bidirectional nature
77 greg 2.4 * of the BSDF (that's what the 'B' stands for) means it all works out.
78     */
79    
80 greg 2.1 typedef struct {
81     OBJREC *mp; /* material pointer */
82     RAY *pr; /* intersected ray */
83     FVECT pnorm; /* perturbed surface normal */
84 greg 2.4 FVECT vray; /* local outgoing (return) vector */
85 greg 2.9 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 greg 2.1 RREAL toloc[3][3]; /* world to local BSDF coords */
87     RREAL fromloc[3][3]; /* local BSDF coords to world */
88     double thick; /* surface thickness */
89 greg 2.52 COLOR cthru; /* "through" component for MAT_ABSDF */
90 greg 2.61 COLOR cthru_surr; /* surround for "through" component */
91 greg 2.1 SDData *sd; /* loaded BSDF data */
92 greg 2.31 COLOR rdiff; /* diffuse reflection */
93 greg 2.39 COLOR runsamp; /* BSDF hemispherical reflection */
94 greg 2.31 COLOR tdiff; /* diffuse transmission */
95 greg 2.39 COLOR tunsamp; /* BSDF hemispherical transmission */
96 greg 2.1 } BSDFDAT; /* BSDF material data */
97    
98     #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
99    
100 greg 2.58 typedef struct {
101     double vy; /* brightness (for sorting) */
102     FVECT tdir; /* through sample direction (normalized) */
103     COLOR vcol; /* BTDF color */
104     } PEAKSAMP; /* BTDF peak sample */
105    
106     /* Comparison function to put near-peak values in descending order */
107     static int
108     cmp_psamp(const void *p1, const void *p2)
109     {
110     double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
111     if (diff > 0) return(-1);
112     if (diff < 0) return(1);
113     return(0);
114     }
115    
116 greg 2.52 /* Compute "through" component color for MAT_ABSDF */
117 greg 2.34 static void
118     compute_through(BSDFDAT *ndp)
119     {
120 greg 2.60 #define NDIR2CHECK 29
121 greg 2.34 static const float dir2check[NDIR2CHECK][2] = {
122 greg 2.60 {0, 0}, {-0.6, 0}, {0, 0.6},
123     {0, -0.6}, {0.6, 0}, {-0.6, 0.6},
124     {-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
125     {-1.2, 0}, {0, 1.2}, {0, -1.2},
126     {1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
127     {1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
128     {0, 1.8}, {0, -1.8}, {1.8, 0},
129     {-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
130     {1.8, -1.8}, {-2.4, 0}, {0, 2.4},
131     {0, -2.4}, {2.4, 0},
132 greg 2.34 };
133 greg 2.58 const double peak_over = 1.5;
134     PEAKSAMP psamp[NDIR2CHECK];
135 greg 2.34 SDSpectralDF *dfp;
136     FVECT pdir;
137     double tomega, srchrad;
138 greg 2.61 double tomsum, tomsurr;
139     COLOR vpeak, vsurr;
140     double vypeak;
141     int i, ns;
142 greg 2.34 SDError ec;
143    
144     if (ndp->pr->rod > 0)
145     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
146     else
147     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
148    
149     if (dfp == NULL)
150     return; /* no specular transmission */
151     if (bright(ndp->pr->pcol) <= FTINY)
152     return; /* pattern is black, here */
153 greg 2.58 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
154     for (i = 0; i < NDIR2CHECK; i++) {
155     SDValue sv;
156     psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
157     psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
158     psamp[i].tdir[2] = -ndp->vray[2];
159     normalize(psamp[i].tdir);
160     ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
161     if (ec)
162     goto baderror;
163     cvt_sdcolor(psamp[i].vcol, &sv);
164 greg 2.61 psamp[i].vy = sv.cieY;
165 greg 2.58 }
166     qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
167 greg 2.61 if (psamp[0].vy <= FTINY)
168     return; /* zero area */
169 greg 2.40 setcolor(vpeak, 0, 0, 0);
170 greg 2.61 setcolor(vsurr, 0, 0, 0);
171     vypeak = tomsum = tomsurr = 0; /* combine top unique values */
172     ns = 0;
173 greg 2.34 for (i = 0; i < NDIR2CHECK; i++) {
174 greg 2.61 if (i && psamp[i].vy == psamp[i-1].vy)
175     continue; /* assume duplicate sample */
176    
177 greg 2.58 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
178     SDqueryMin, ndp->sd);
179 greg 2.34 if (ec)
180     goto baderror;
181 greg 2.61 /* not really a peak? */
182     if (tomega > 1.5*dfp->minProjSA ||
183     vypeak > 8.*psamp[i].vy*ns) {
184     if (!i) return; /* abort */
185     scalecolor(psamp[i].vcol, tomega);
186     addcolor(vsurr, psamp[i].vcol);
187     tomsurr += tomega;
188 greg 2.58 continue;
189 greg 2.34 }
190 greg 2.58 scalecolor(psamp[i].vcol, tomega);
191     addcolor(vpeak, psamp[i].vcol);
192     tomsum += tomega;
193     vypeak += psamp[i].vy;
194     ++ns;
195     }
196 greg 2.61 if (vypeak*tomsurr < peak_over*bright(vsurr)*ns)
197 greg 2.58 return; /* peak not peaky enough */
198     if ((vypeak/ns - ndp->sd->tLamb.cieY*(1./PI))*tomsum <= .001)
199 greg 2.40 return; /* < 0.1% transmission */
200 greg 2.58 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
201 greg 2.34 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
202 greg 2.61 if (tomsurr > FTINY) { /* surround contribution? */
203     scalecolor(vsurr, 1./tomsurr); /* this one is avg. BTDF */
204     copycolor(ndp->cthru_surr, vsurr);
205     multcolor(ndp->cthru_surr, ndp->pr->pcol);
206     }
207 greg 2.34 return;
208     baderror:
209     objerror(ndp->mp, USER, transSDError(ec));
210     #undef NDIR2CHECK
211     }
212    
213 greg 2.4 /* Jitter ray sample according to projected solid angle and specjitter */
214     static void
215 greg 2.15 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
216 greg 2.4 {
217     VCOPY(vres, ndp->vray);
218     if (specjitter < 1.)
219     sr_psa *= specjitter;
220     if (sr_psa <= FTINY)
221     return;
222     vres[0] += sr_psa*(.5 - frandom());
223     vres[1] += sr_psa*(.5 - frandom());
224     normalize(vres);
225     }
226    
227 greg 2.33 /* Get BSDF specular for direct component, returning true if OK to proceed */
228 greg 2.7 static int
229 greg 2.33 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
230 greg 2.7 {
231 greg 2.43 int nsamp;
232     double wtot = 0;
233 greg 2.13 FVECT vsrc, vsmp, vjit;
234 greg 2.36 double tomega, tomega2;
235 greg 2.15 double sf, tsr, sd[2];
236 greg 2.32 COLOR csmp, cdiff;
237     double diffY;
238 greg 2.7 SDValue sv;
239     SDError ec;
240 greg 2.13 int i;
241 greg 2.37 /* in case we fail */
242 greg 2.40 setcolor(cval, 0, 0, 0);
243 greg 2.7 /* transform source direction */
244     if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
245     return(0);
246 greg 2.32 /* will discount diffuse portion */
247     switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
248     case 3:
249     if (ndp->sd->rf == NULL)
250     return(0); /* all diffuse */
251     sv = ndp->sd->rLambFront;
252     break;
253     case 0:
254     if (ndp->sd->rb == NULL)
255     return(0); /* all diffuse */
256     sv = ndp->sd->rLambBack;
257     break;
258     default:
259     if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
260     return(0); /* all diffuse */
261     sv = ndp->sd->tLamb;
262     break;
263     }
264 greg 2.33 if (sv.cieY > FTINY) {
265     diffY = sv.cieY *= 1./PI;
266 greg 2.32 cvt_sdcolor(cdiff, &sv);
267     } else {
268 greg 2.40 diffY = 0;
269     setcolor(cdiff, 0, 0, 0);
270 greg 2.32 }
271 greg 2.53 /* need projected solid angle */
272 greg 2.37 omega *= fabs(vsrc[2]);
273 greg 2.13 /* check indirect over-counting */
274 greg 2.40 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
275 greg 2.53 double dx = vsrc[0] + ndp->vray[0];
276     double dy = vsrc[1] + ndp->vray[1];
277     SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
278     ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
279     ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
280    
281     if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
282 greg 2.61 2.*sqrt(omega*dfp->minProjSA))) {
283     if (bright(ndp->cthru_surr) <= FTINY)
284     return(0);
285     copycolor(cval, ndp->cthru_surr);
286     return(1); /* return non-zero surround BTDF */
287     }
288 greg 2.7 }
289 greg 2.53 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
290     if (ec)
291     goto baderror;
292 greg 2.37 /* assign number of samples */
293 greg 2.15 sf = specjitter * ndp->pr->rweight;
294 greg 2.40 if (tomega <= 0)
295 greg 2.24 nsamp = 1;
296     else if (25.*tomega <= omega)
297 greg 2.15 nsamp = 100.*sf + .5;
298     else
299     nsamp = 4.*sf*omega/tomega + .5;
300     nsamp += !nsamp;
301 greg 2.37 sf = sqrt(omega); /* sample our source area */
302 greg 2.15 tsr = sqrt(tomega);
303 greg 2.13 for (i = nsamp; i--; ) {
304     VCOPY(vsmp, vsrc); /* jitter query directions */
305     if (nsamp > 1) {
306     multisamp(sd, 2, (i + frandom())/(double)nsamp);
307     vsmp[0] += (sd[0] - .5)*sf;
308     vsmp[1] += (sd[1] - .5)*sf;
309 greg 2.36 normalize(vsmp);
310 greg 2.13 }
311 greg 2.15 bsdf_jitter(vjit, ndp, tsr);
312 greg 2.37 /* compute BSDF */
313     ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
314     if (ec)
315     goto baderror;
316     if (sv.cieY - diffY <= FTINY)
317     continue; /* no specular part */
318 greg 2.36 /* check for variable resolution */
319     ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
320     if (ec)
321     goto baderror;
322     if (tomega2 < .12*tomega)
323     continue; /* not safe to include */
324 greg 2.13 cvt_sdcolor(csmp, &sv);
325 greg 2.59 #if 0
326     if (sf < 2.5*tsr) { /* weight by BSDF for small sources */
327 greg 2.44 scalecolor(csmp, sv.cieY);
328     wtot += sv.cieY;
329     } else
330 greg 2.59 #endif
331     wtot += 1.;
332 greg 2.43 addcolor(cval, csmp);
333 greg 2.13 }
334 greg 2.43 if (wtot <= FTINY) /* no valid specular samples? */
335 greg 2.37 return(0);
336    
337 greg 2.43 sf = 1./wtot; /* weighted average BSDF */
338 greg 2.13 scalecolor(cval, sf);
339 greg 2.32 /* subtract diffuse contribution */
340     for (i = 3*(diffY > FTINY); i--; )
341 greg 2.40 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
342     colval(cval,i) = 0;
343 greg 2.32 return(1);
344 greg 2.13 baderror:
345     objerror(ndp->mp, USER, transSDError(ec));
346 greg 2.17 return(0); /* gratis return */
347 greg 2.7 }
348    
349 greg 2.5 /* Compute source contribution for BSDF (reflected & transmitted) */
350 greg 2.1 static void
351 greg 2.5 dir_bsdf(
352 greg 2.1 COLOR cval, /* returned coefficient */
353     void *nnp, /* material data */
354     FVECT ldir, /* light source direction */
355     double omega /* light source size */
356     )
357     {
358 greg 2.3 BSDFDAT *np = (BSDFDAT *)nnp;
359 greg 2.1 double ldot;
360     double dtmp;
361     COLOR ctmp;
362    
363 greg 2.40 setcolor(cval, 0, 0, 0);
364 greg 2.1
365     ldot = DOT(np->pnorm, ldir);
366     if ((-FTINY <= ldot) & (ldot <= FTINY))
367     return;
368    
369 greg 2.9 if (ldot > 0 && bright(np->rdiff) > FTINY) {
370 greg 2.1 /*
371 greg 2.39 * Compute diffuse reflected component
372 greg 2.1 */
373     copycolor(ctmp, np->rdiff);
374     dtmp = ldot * omega * (1./PI);
375     scalecolor(ctmp, dtmp);
376     addcolor(cval, ctmp);
377     }
378 greg 2.9 if (ldot < 0 && bright(np->tdiff) > FTINY) {
379 greg 2.1 /*
380 greg 2.39 * Compute diffuse transmission
381 greg 2.1 */
382     copycolor(ctmp, np->tdiff);
383     dtmp = -ldot * omega * (1.0/PI);
384     scalecolor(ctmp, dtmp);
385     addcolor(cval, ctmp);
386     }
387 greg 2.30 if (ambRayInPmap(np->pr))
388     return; /* specular already in photon map */
389 greg 2.1 /*
390 greg 2.39 * Compute specular scattering coefficient using BSDF
391 greg 2.1 */
392 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
393 greg 2.1 return;
394 greg 2.31 if (ldot < 0) { /* pattern for specular transmission */
395 greg 2.1 multcolor(ctmp, np->pr->pcol);
396     dtmp = -ldot * omega;
397 greg 2.31 } else
398     dtmp = ldot * omega;
399 greg 2.1 scalecolor(ctmp, dtmp);
400     addcolor(cval, ctmp);
401     }
402    
403 greg 2.5 /* Compute source contribution for BSDF (reflected only) */
404     static void
405     dir_brdf(
406     COLOR cval, /* returned coefficient */
407     void *nnp, /* material data */
408     FVECT ldir, /* light source direction */
409     double omega /* light source size */
410     )
411     {
412     BSDFDAT *np = (BSDFDAT *)nnp;
413     double ldot;
414     double dtmp;
415     COLOR ctmp, ctmp1, ctmp2;
416    
417 greg 2.40 setcolor(cval, 0, 0, 0);
418 greg 2.5
419     ldot = DOT(np->pnorm, ldir);
420    
421     if (ldot <= FTINY)
422     return;
423    
424     if (bright(np->rdiff) > FTINY) {
425     /*
426 greg 2.39 * Compute diffuse reflected component
427 greg 2.5 */
428     copycolor(ctmp, np->rdiff);
429     dtmp = ldot * omega * (1./PI);
430     scalecolor(ctmp, dtmp);
431     addcolor(cval, ctmp);
432     }
433 greg 2.30 if (ambRayInPmap(np->pr))
434     return; /* specular already in photon map */
435 greg 2.5 /*
436 greg 2.39 * Compute specular reflection coefficient using BSDF
437 greg 2.5 */
438 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
439 greg 2.5 return;
440     dtmp = ldot * omega;
441     scalecolor(ctmp, dtmp);
442     addcolor(cval, ctmp);
443     }
444    
445     /* Compute source contribution for BSDF (transmitted only) */
446     static void
447     dir_btdf(
448     COLOR cval, /* returned coefficient */
449     void *nnp, /* material data */
450     FVECT ldir, /* light source direction */
451     double omega /* light source size */
452     )
453     {
454     BSDFDAT *np = (BSDFDAT *)nnp;
455     double ldot;
456     double dtmp;
457     COLOR ctmp;
458    
459 greg 2.40 setcolor(cval, 0, 0, 0);
460 greg 2.5
461     ldot = DOT(np->pnorm, ldir);
462    
463     if (ldot >= -FTINY)
464     return;
465    
466     if (bright(np->tdiff) > FTINY) {
467     /*
468 greg 2.39 * Compute diffuse transmission
469 greg 2.5 */
470     copycolor(ctmp, np->tdiff);
471     dtmp = -ldot * omega * (1.0/PI);
472     scalecolor(ctmp, dtmp);
473     addcolor(cval, ctmp);
474     }
475 greg 2.30 if (ambRayInPmap(np->pr))
476     return; /* specular already in photon map */
477 greg 2.5 /*
478 greg 2.39 * Compute specular scattering coefficient using BSDF
479 greg 2.5 */
480 greg 2.33 if (!direct_specular_OK(ctmp, ldir, omega, np))
481 greg 2.5 return;
482     /* full pattern on transmission */
483     multcolor(ctmp, np->pr->pcol);
484     dtmp = -ldot * omega;
485     scalecolor(ctmp, dtmp);
486     addcolor(cval, ctmp);
487     }
488    
489 greg 2.1 /* Sample separate BSDF component */
490     static int
491 greg 2.40 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
492 greg 2.1 {
493 greg 2.47 const int hasthru = (xmit &&
494     !(ndp->pr->crtype & (SPECULAR|AMBIENT))
495     && bright(ndp->cthru) > FTINY);
496 greg 2.41 int nstarget = 1;
497     int nsent = 0;
498     int n;
499     SDError ec;
500     SDValue bsv;
501     double xrand;
502     FVECT vsmp, vinc;
503     RAY sr;
504 greg 2.1 /* multiple samples? */
505     if (specjitter > 1.5) {
506     nstarget = specjitter*ndp->pr->rweight + .5;
507 greg 2.14 nstarget += !nstarget;
508 greg 2.1 }
509 greg 2.11 /* run through our samples */
510 greg 2.40 for (n = 0; n < nstarget; n++) {
511 greg 2.15 if (nstarget == 1) { /* stratify random variable */
512 greg 2.11 xrand = urand(ilhash(dimlist,ndims)+samplendx);
513 greg 2.15 if (specjitter < 1.)
514     xrand = .5 + specjitter*(xrand-.5);
515     } else {
516 greg 2.40 xrand = (n + frandom())/(double)nstarget;
517 greg 2.15 }
518 greg 2.11 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
519 greg 2.15 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
520 greg 2.40 VCOPY(vinc, vsmp); /* to compare after */
521 greg 2.11 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
522 greg 2.1 if (ec)
523 greg 2.2 objerror(ndp->mp, USER, transSDError(ec));
524 greg 2.11 if (bsv.cieY <= FTINY) /* zero component? */
525 greg 2.1 break;
526 greg 2.40 if (hasthru) { /* check for view ray */
527     double dx = vinc[0] + vsmp[0];
528     double dy = vinc[1] + vsmp[1];
529     if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
530     continue; /* exclude view sample */
531     }
532     /* map non-view sample->world */
533 greg 2.4 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
534 greg 2.1 break;
535     /* spawn a specular ray */
536     if (nstarget > 1)
537     bsv.cieY /= (double)nstarget;
538 greg 2.11 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
539 greg 2.40 if (xmit) /* apply pattern on transmit */
540 greg 2.1 multcolor(sr.rcoef, ndp->pr->pcol);
541     if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
542 greg 2.48 if (!n & (nstarget > 1)) {
543 greg 2.49 n = nstarget; /* avoid infinitue loop */
544 greg 2.48 nstarget = nstarget*sr.rweight/minweight;
545 greg 2.49 if (n == nstarget) break;
546 greg 2.48 n = -1; /* moved target */
547     }
548     continue; /* try again */
549 greg 2.1 }
550 greg 2.40 if (xmit && ndp->thick != 0) /* need to offset origin? */
551 greg 2.5 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
552 greg 2.1 rayvalue(&sr); /* send & evaluate sample */
553     multcolor(sr.rcol, sr.rcoef);
554     addcolor(ndp->pr->rcol, sr.rcol);
555 greg 2.40 ++nsent;
556 greg 2.1 }
557     return(nsent);
558     }
559    
560     /* Sample non-diffuse components of BSDF */
561     static int
562     sample_sdf(BSDFDAT *ndp, int sflags)
563     {
564 greg 2.46 int hasthru = (sflags == SDsampSpT &&
565 greg 2.47 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
566     && bright(ndp->cthru) > FTINY);
567 greg 2.1 int n, ntotal = 0;
568 greg 2.40 double b = 0;
569 greg 2.1 SDSpectralDF *dfp;
570     COLORV *unsc;
571    
572     if (sflags == SDsampSpT) {
573 greg 2.39 unsc = ndp->tunsamp;
574 greg 2.22 if (ndp->pr->rod > 0)
575     dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
576     else
577     dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
578 greg 2.1 } else /* sflags == SDsampSpR */ {
579 greg 2.39 unsc = ndp->runsamp;
580 greg 2.31 if (ndp->pr->rod > 0)
581 greg 2.1 dfp = ndp->sd->rf;
582 greg 2.31 else
583 greg 2.1 dfp = ndp->sd->rb;
584     }
585 greg 2.40 setcolor(unsc, 0, 0, 0);
586 greg 2.1 if (dfp == NULL) /* no specular component? */
587     return(0);
588 greg 2.40
589     if (hasthru) { /* separate view sample? */
590     RAY tr;
591     if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
592     VCOPY(tr.rdir, ndp->pr->rdir);
593     rayvalue(&tr);
594     multcolor(tr.rcol, tr.rcoef);
595     addcolor(ndp->pr->rcol, tr.rcol);
596 greg 2.56 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
597 greg 2.40 ++ntotal;
598     b = bright(ndp->cthru);
599     } else
600     hasthru = 0;
601     }
602 greg 2.43 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
603 greg 2.40 b = 0;
604     } else {
605     FVECT vjit;
606     bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
607     b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
608     if (b < 0) b = 0;
609     }
610     if (b <= specthresh+FTINY) { /* below sampling threshold? */
611     if (b > FTINY) { /* XXX no color from BSDF */
612 greg 2.1 if (sflags == SDsampSpT) {
613 greg 2.39 copycolor(unsc, ndp->pr->pcol);
614 greg 2.40 scalecolor(unsc, b);
615 greg 2.1 } else /* no pattern on reflection */
616 greg 2.40 setcolor(unsc, b, b, b);
617 greg 2.1 }
618 greg 2.40 return(ntotal);
619 greg 2.1 }
620 greg 2.41 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
621     ndims += 2;
622 greg 2.1 for (n = dfp->ncomp; n--; ) { /* loop over components */
623     dimlist[ndims-1] = n + 9438;
624     ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
625     }
626     ndims -= 2;
627     return(ntotal);
628     }
629    
630     /* Color a ray that hit a BSDF material */
631     int
632     m_bsdf(OBJREC *m, RAY *r)
633     {
634 greg 2.50 int hasthick = (m->otype == MAT_BSDF);
635 greg 2.6 int hitfront;
636 greg 2.1 COLOR ctmp;
637     SDError ec;
638 greg 2.5 FVECT upvec, vtmp;
639 greg 2.1 MFUNC *mf;
640     BSDFDAT nd;
641     /* check arguments */
642 greg 2.50 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
643 greg 2.1 (m->oargs.nfargs % 3))
644     objerror(m, USER, "bad # arguments");
645 greg 2.6 /* record surface struck */
646 greg 2.9 hitfront = (r->rod > 0);
647 greg 2.1 /* load cal file */
648 greg 2.50 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
649     : getfunc(m, 4, 0xe, 1) ;
650 greg 2.25 setfunc(m, r);
651 greg 2.50 nd.thick = 0; /* set thickness */
652     if (hasthick) {
653     nd.thick = evalue(mf->ep[0]);
654     if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
655     nd.thick = 0;
656     }
657 greg 2.26 /* check backface visibility */
658     if (!hitfront & !backvis) {
659     raytrans(r);
660     return(1);
661     }
662 greg 2.5 /* check other rays to pass */
663 greg 2.34 if (nd.thick != 0 && (r->crtype & SHADOW ||
664     !(r->crtype & (SPECULAR|AMBIENT)) ||
665 greg 2.29 (nd.thick > 0) ^ hitfront)) {
666 greg 2.5 raytrans(r); /* hide our proxy */
667 greg 2.1 return(1);
668     }
669 greg 2.51 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
670     return(1);
671 greg 2.31 nd.mp = m;
672     nd.pr = r;
673 greg 2.5 /* get BSDF data */
674 greg 2.50 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
675 greg 2.51 /* early shadow check #2 */
676 greg 2.55 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
677     SDfreeCache(nd.sd);
678 greg 2.34 return(1);
679 greg 2.55 }
680 greg 2.1 /* diffuse reflectance */
681 greg 2.6 if (hitfront) {
682 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
683     if (m->oargs.nfargs >= 3) {
684     setcolor(ctmp, m->oargs.farg[0],
685 greg 2.1 m->oargs.farg[1],
686     m->oargs.farg[2]);
687 greg 2.31 addcolor(nd.rdiff, ctmp);
688     }
689 greg 2.1 } else {
690 greg 2.31 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
691     if (m->oargs.nfargs >= 6) {
692     setcolor(ctmp, m->oargs.farg[3],
693 greg 2.1 m->oargs.farg[4],
694     m->oargs.farg[5]);
695 greg 2.31 addcolor(nd.rdiff, ctmp);
696     }
697 greg 2.1 }
698     /* diffuse transmittance */
699 greg 2.31 cvt_sdcolor(nd.tdiff, &nd.sd->tLamb);
700     if (m->oargs.nfargs >= 9) {
701     setcolor(ctmp, m->oargs.farg[6],
702 greg 2.1 m->oargs.farg[7],
703     m->oargs.farg[8]);
704 greg 2.31 addcolor(nd.tdiff, ctmp);
705     }
706 greg 2.1 /* get modifiers */
707     raytexture(r, m->omod);
708     /* modify diffuse values */
709     multcolor(nd.rdiff, r->pcol);
710     multcolor(nd.tdiff, r->pcol);
711     /* get up vector */
712 greg 2.50 upvec[0] = evalue(mf->ep[hasthick+0]);
713     upvec[1] = evalue(mf->ep[hasthick+1]);
714     upvec[2] = evalue(mf->ep[hasthick+2]);
715 greg 2.1 /* return to world coords */
716 greg 2.21 if (mf->fxp != &unitxf) {
717     multv3(upvec, upvec, mf->fxp->xfm);
718     nd.thick *= mf->fxp->sca;
719 greg 2.1 }
720 greg 2.23 if (r->rox != NULL) {
721     multv3(upvec, upvec, r->rox->f.xfm);
722     nd.thick *= r->rox->f.sca;
723     }
724 greg 2.1 raynormal(nd.pnorm, r);
725     /* compute local BSDF xform */
726     ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
727     if (!ec) {
728 greg 2.4 nd.vray[0] = -r->rdir[0];
729     nd.vray[1] = -r->rdir[1];
730     nd.vray[2] = -r->rdir[2];
731     ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
732 greg 2.20 }
733 greg 2.19 if (ec) {
734     objerror(m, WARNING, "Illegal orientation vector");
735 greg 2.55 SDfreeCache(nd.sd);
736 greg 2.19 return(1);
737 greg 2.1 }
738 greg 2.50 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
739 greg 2.61 setcolor(nd.cthru_surr, 0, 0, 0);
740 greg 2.52 if (m->otype == MAT_ABSDF) {
741 greg 2.50 compute_through(&nd);
742     if (r->crtype & SHADOW) {
743     RAY tr; /* attempt to pass shadow ray */
744 greg 2.55 SDfreeCache(nd.sd);
745 greg 2.50 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
746     return(1); /* no through component */
747     VCOPY(tr.rdir, r->rdir);
748     rayvalue(&tr); /* transmit with scaling */
749     multcolor(tr.rcol, tr.rcoef);
750     copycolor(r->rcol, tr.rcol);
751     return(1); /* we're done */
752     }
753 greg 2.34 }
754     ec = SDinvXform(nd.fromloc, nd.toloc);
755     if (!ec) /* determine BSDF resolution */
756     ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
757     SDqueryMin+SDqueryMax, nd.sd);
758 greg 2.20 if (ec)
759     objerror(m, USER, transSDError(ec));
760    
761 greg 2.9 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
762     nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
763 greg 2.6 if (!hitfront) { /* perturb normal towards hit */
764 greg 2.1 nd.pnorm[0] = -nd.pnorm[0];
765     nd.pnorm[1] = -nd.pnorm[1];
766     nd.pnorm[2] = -nd.pnorm[2];
767     }
768     /* sample reflection */
769     sample_sdf(&nd, SDsampSpR);
770     /* sample transmission */
771     sample_sdf(&nd, SDsampSpT);
772     /* compute indirect diffuse */
773 greg 2.39 copycolor(ctmp, nd.rdiff);
774     addcolor(ctmp, nd.runsamp);
775     if (bright(ctmp) > FTINY) { /* ambient from reflection */
776 greg 2.6 if (!hitfront)
777 greg 2.1 flipsurface(r);
778     multambient(ctmp, r, nd.pnorm);
779     addcolor(r->rcol, ctmp);
780 greg 2.6 if (!hitfront)
781 greg 2.1 flipsurface(r);
782     }
783 greg 2.39 copycolor(ctmp, nd.tdiff);
784     addcolor(ctmp, nd.tunsamp);
785     if (bright(ctmp) > FTINY) { /* ambient from other side */
786 greg 2.1 FVECT bnorm;
787 greg 2.6 if (hitfront)
788 greg 2.1 flipsurface(r);
789     bnorm[0] = -nd.pnorm[0];
790     bnorm[1] = -nd.pnorm[1];
791     bnorm[2] = -nd.pnorm[2];
792 greg 2.9 if (nd.thick != 0) { /* proxy with offset? */
793 greg 2.5 VCOPY(vtmp, r->rop);
794 greg 2.18 VSUM(r->rop, vtmp, r->ron, nd.thick);
795 greg 2.5 multambient(ctmp, r, bnorm);
796     VCOPY(r->rop, vtmp);
797     } else
798     multambient(ctmp, r, bnorm);
799 greg 2.1 addcolor(r->rcol, ctmp);
800 greg 2.6 if (hitfront)
801 greg 2.1 flipsurface(r);
802     }
803     /* add direct component */
804 greg 2.22 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
805     (nd.sd->tb == NULL)) {
806 greg 2.5 direct(r, dir_brdf, &nd); /* reflection only */
807 greg 2.9 } else if (nd.thick == 0) {
808 greg 2.5 direct(r, dir_bsdf, &nd); /* thin surface scattering */
809     } else {
810     direct(r, dir_brdf, &nd); /* reflection first */
811     VCOPY(vtmp, r->rop); /* offset for transmitted */
812     VSUM(r->rop, vtmp, r->ron, -nd.thick);
813 greg 2.6 direct(r, dir_btdf, &nd); /* separate transmission */
814 greg 2.5 VCOPY(r->rop, vtmp);
815     }
816 greg 2.1 /* clean up */
817     SDfreeCache(nd.sd);
818     return(1);
819     }