ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.9
Committed: Tue Apr 19 21:31:22 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.8: +39 -28 lines
Log Message:
Fixed interface for determining BSDF solid angles

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.8 2011/04/06 00:14:26 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16
17 /*
18 * Arguments to this material include optional diffuse colors.
19 * String arguments include the BSDF and function files.
20 * A non-zero thickness causes the strange but useful behavior
21 * of translating transmitted rays this distance beneath the surface
22 * (opposite the surface normal) to bypass any intervening geometry.
23 * Translation only affects scattered, non-source-directed samples.
24 * A non-zero thickness has the further side-effect that an unscattered
25 * (view) ray will pass right through our material if it has any
26 * non-diffuse transmission, making the BSDF surface invisible. This
27 * shows the proxied geometry instead. Thickness has the further
28 * effect of turning off reflection on the hidden side so that rays
29 * heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * The "up" vector for the BSDF is given by three variables, defined
39 * (along with the thickness) by the named function file, or '.' if none.
40 * Together with the surface normal, this defines the local coordinate
41 * system for the BSDF.
42 * We do not reorient the surface, so if the BSDF has no back-side
43 * reflectance and none is given in the real arguments, a BSDF surface
44 * with zero thickness will appear black when viewed from behind
45 * unless backface visibility is off.
46 * The diffuse arguments are added to components in the BSDF file,
47 * not multiplied. However, patterns affect this material as a multiplier
48 * on everything except non-diffuse reflection.
49 *
50 * Arguments for MAT_BSDF are:
51 * 6+ thick BSDFfile ux uy uz funcfile transform
52 * 0
53 * 0|3|6|9 rdf gdf bdf
54 * rdb gdb bdb
55 * rdt gdt bdt
56 */
57
58 /*
59 * Note that our reverse ray-tracing process means that the positions
60 * of incoming and outgoing vectors may be reversed in our calls
61 * to the BSDF library. This is fine, since the bidirectional nature
62 * of the BSDF (that's what the 'B' stands for) means it all works out.
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 FVECT pnorm; /* perturbed surface normal */
69 FVECT vray; /* local outgoing (return) vector */
70 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
71 double thru_psa; /* through direction projected solid angle */
72 RREAL toloc[3][3]; /* world to local BSDF coords */
73 RREAL fromloc[3][3]; /* local BSDF coords to world */
74 double thick; /* surface thickness */
75 SDData *sd; /* loaded BSDF data */
76 COLOR runsamp; /* BSDF hemispherical reflection */
77 COLOR rdiff; /* added diffuse reflection */
78 COLOR tunsamp; /* BSDF hemispherical transmission */
79 COLOR tdiff; /* added diffuse transmission */
80 } BSDFDAT; /* BSDF material data */
81
82 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
83
84 /* Jitter ray sample according to projected solid angle and specjitter */
85 static void
86 bsdf_jitter(FVECT vres, BSDFDAT *ndp, int domax)
87 {
88 double sr_psa = ndp->sr_vpsa[domax];
89
90 VCOPY(vres, ndp->vray);
91 if (specjitter < 1.)
92 sr_psa *= specjitter;
93 if (sr_psa <= FTINY)
94 return;
95 vres[0] += sr_psa*(.5 - frandom());
96 vres[1] += sr_psa*(.5 - frandom());
97 normalize(vres);
98 }
99
100 /* Evaluate BSDF for direct component, returning true if OK to proceed */
101 static int
102 direct_bsdf_OK(COLOR cval, FVECT ldir, BSDFDAT *ndp)
103 {
104 FVECT vsrc, vjit;
105 SDValue sv;
106 SDError ec;
107 /* transform source direction */
108 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
109 return(0);
110 /* jitter query direction */
111 bsdf_jitter(vjit, ndp, 0);
112 /* avoid indirect over-counting */
113 if (ndp->thick != 0 && ndp->pr->crtype & (SPECULAR|AMBIENT) &&
114 vsrc[2] > 0 ^ vjit[2] > 0) {
115 double dx = vsrc[0] + vjit[0];
116 double dy = vsrc[1] + vjit[1];
117 if (dx*dx + dy*dy <= ndp->thru_psa)
118 return(0);
119 }
120 ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd);
121 if (ec)
122 objerror(ndp->mp, USER, transSDError(ec));
123
124 if (sv.cieY <= FTINY) /* not worth using? */
125 return(0);
126 /* else we're good to go */
127 cvt_sdcolor(cval, &sv);
128 return(1);
129 }
130
131 /* Compute source contribution for BSDF (reflected & transmitted) */
132 static void
133 dir_bsdf(
134 COLOR cval, /* returned coefficient */
135 void *nnp, /* material data */
136 FVECT ldir, /* light source direction */
137 double omega /* light source size */
138 )
139 {
140 BSDFDAT *np = (BSDFDAT *)nnp;
141 double ldot;
142 double dtmp;
143 COLOR ctmp;
144
145 setcolor(cval, .0, .0, .0);
146
147 ldot = DOT(np->pnorm, ldir);
148 if ((-FTINY <= ldot) & (ldot <= FTINY))
149 return;
150
151 if (ldot > 0 && bright(np->rdiff) > FTINY) {
152 /*
153 * Compute added diffuse reflected component.
154 */
155 copycolor(ctmp, np->rdiff);
156 dtmp = ldot * omega * (1./PI);
157 scalecolor(ctmp, dtmp);
158 addcolor(cval, ctmp);
159 }
160 if (ldot < 0 && bright(np->tdiff) > FTINY) {
161 /*
162 * Compute added diffuse transmission.
163 */
164 copycolor(ctmp, np->tdiff);
165 dtmp = -ldot * omega * (1.0/PI);
166 scalecolor(ctmp, dtmp);
167 addcolor(cval, ctmp);
168 }
169 /*
170 * Compute scattering coefficient using BSDF.
171 */
172 if (!direct_bsdf_OK(ctmp, ldir, np))
173 return;
174 if (ldot > 0) { /* pattern only diffuse reflection */
175 COLOR ctmp1, ctmp2;
176 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
177 : np->sd->rLambBack.cieY;
178 /* diffuse fraction */
179 dtmp /= PI * bright(ctmp);
180 copycolor(ctmp2, np->pr->pcol);
181 scalecolor(ctmp2, dtmp);
182 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
183 addcolor(ctmp1, ctmp2);
184 multcolor(ctmp, ctmp1); /* apply derated pattern */
185 dtmp = ldot * omega;
186 } else { /* full pattern on transmission */
187 multcolor(ctmp, np->pr->pcol);
188 dtmp = -ldot * omega;
189 }
190 scalecolor(ctmp, dtmp);
191 addcolor(cval, ctmp);
192 }
193
194 /* Compute source contribution for BSDF (reflected only) */
195 static void
196 dir_brdf(
197 COLOR cval, /* returned coefficient */
198 void *nnp, /* material data */
199 FVECT ldir, /* light source direction */
200 double omega /* light source size */
201 )
202 {
203 BSDFDAT *np = (BSDFDAT *)nnp;
204 double ldot;
205 double dtmp;
206 COLOR ctmp, ctmp1, ctmp2;
207
208 setcolor(cval, .0, .0, .0);
209
210 ldot = DOT(np->pnorm, ldir);
211
212 if (ldot <= FTINY)
213 return;
214
215 if (bright(np->rdiff) > FTINY) {
216 /*
217 * Compute added diffuse reflected component.
218 */
219 copycolor(ctmp, np->rdiff);
220 dtmp = ldot * omega * (1./PI);
221 scalecolor(ctmp, dtmp);
222 addcolor(cval, ctmp);
223 }
224 /*
225 * Compute reflection coefficient using BSDF.
226 */
227 if (!direct_bsdf_OK(ctmp, ldir, np))
228 return;
229 /* pattern only diffuse reflection */
230 dtmp = (np->pr->rod > 0) ? np->sd->rLambFront.cieY
231 : np->sd->rLambBack.cieY;
232 dtmp /= PI * bright(ctmp); /* diffuse fraction */
233 copycolor(ctmp2, np->pr->pcol);
234 scalecolor(ctmp2, dtmp);
235 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
236 addcolor(ctmp1, ctmp2);
237 multcolor(ctmp, ctmp1); /* apply derated pattern */
238 dtmp = ldot * omega;
239 scalecolor(ctmp, dtmp);
240 addcolor(cval, ctmp);
241 }
242
243 /* Compute source contribution for BSDF (transmitted only) */
244 static void
245 dir_btdf(
246 COLOR cval, /* returned coefficient */
247 void *nnp, /* material data */
248 FVECT ldir, /* light source direction */
249 double omega /* light source size */
250 )
251 {
252 BSDFDAT *np = (BSDFDAT *)nnp;
253 double ldot;
254 double dtmp;
255 COLOR ctmp;
256
257 setcolor(cval, .0, .0, .0);
258
259 ldot = DOT(np->pnorm, ldir);
260
261 if (ldot >= -FTINY)
262 return;
263
264 if (bright(np->tdiff) > FTINY) {
265 /*
266 * Compute added diffuse transmission.
267 */
268 copycolor(ctmp, np->tdiff);
269 dtmp = -ldot * omega * (1.0/PI);
270 scalecolor(ctmp, dtmp);
271 addcolor(cval, ctmp);
272 }
273 /*
274 * Compute scattering coefficient using BSDF.
275 */
276 if (!direct_bsdf_OK(ctmp, ldir, np))
277 return;
278 /* full pattern on transmission */
279 multcolor(ctmp, np->pr->pcol);
280 dtmp = -ldot * omega;
281 scalecolor(ctmp, dtmp);
282 addcolor(cval, ctmp);
283 }
284
285 /* Sample separate BSDF component */
286 static int
287 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
288 {
289 int nstarget = 1;
290 int nsent = 0;
291 SDError ec;
292 SDValue bsv;
293 double sthick;
294 FVECT vjit, vsmp;
295 RAY sr;
296 int ntrials;
297 /* multiple samples? */
298 if (specjitter > 1.5) {
299 nstarget = specjitter*ndp->pr->rweight + .5;
300 if (nstarget < 1)
301 nstarget = 1;
302 }
303 /* run through our trials */
304 for (ntrials = 0; nsent < nstarget && ntrials < 9*nstarget; ntrials++) {
305 SDerrorDetail[0] = '\0';
306 /* sample direction & coef. */
307 bsdf_jitter(vjit, ndp, 0);
308 ec = SDsampComponent(&bsv, vsmp, vjit, ntrials ? frandom()
309 : urand(ilhash(dimlist,ndims)+samplendx), dcp);
310 if (ec)
311 objerror(ndp->mp, USER, transSDError(ec));
312 /* zero component? */
313 if (bsv.cieY <= FTINY)
314 break;
315 /* map vector to world */
316 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
317 break;
318 /* unintentional penetration? */
319 if (DOT(sr.rdir, ndp->pr->ron) > 0 ^ vsmp[2] > 0)
320 continue;
321 /* spawn a specular ray */
322 if (nstarget > 1)
323 bsv.cieY /= (double)nstarget;
324 cvt_sdcolor(sr.rcoef, &bsv); /* use color */
325 if (usepat) /* pattern on transmission */
326 multcolor(sr.rcoef, ndp->pr->pcol);
327 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
328 if (maxdepth > 0)
329 break;
330 ++nsent; /* Russian roulette victim */
331 continue;
332 }
333 /* need to offset origin? */
334 if (ndp->thick != 0 && ndp->pr->rod > 0 ^ vsmp[2] > 0)
335 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
336 rayvalue(&sr); /* send & evaluate sample */
337 multcolor(sr.rcol, sr.rcoef);
338 addcolor(ndp->pr->rcol, sr.rcol);
339 ++nsent;
340 }
341 return(nsent);
342 }
343
344 /* Sample non-diffuse components of BSDF */
345 static int
346 sample_sdf(BSDFDAT *ndp, int sflags)
347 {
348 int n, ntotal = 0;
349 SDSpectralDF *dfp;
350 COLORV *unsc;
351
352 if (sflags == SDsampSpT) {
353 unsc = ndp->tunsamp;
354 dfp = ndp->sd->tf;
355 cvt_sdcolor(unsc, &ndp->sd->tLamb);
356 } else /* sflags == SDsampSpR */ {
357 unsc = ndp->runsamp;
358 if (ndp->pr->rod > 0) {
359 dfp = ndp->sd->rf;
360 cvt_sdcolor(unsc, &ndp->sd->rLambFront);
361 } else {
362 dfp = ndp->sd->rb;
363 cvt_sdcolor(unsc, &ndp->sd->rLambBack);
364 }
365 }
366 multcolor(unsc, ndp->pr->pcol);
367 if (dfp == NULL) /* no specular component? */
368 return(0);
369 /* below sampling threshold? */
370 if (dfp->maxHemi <= specthresh+FTINY) {
371 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
372 FVECT vjit;
373 double d;
374 COLOR ctmp;
375 bsdf_jitter(vjit, ndp, 1);
376 d = SDdirectHemi(vjit, sflags, ndp->sd);
377 if (sflags == SDsampSpT) {
378 copycolor(ctmp, ndp->pr->pcol);
379 scalecolor(ctmp, d);
380 } else /* no pattern on reflection */
381 setcolor(ctmp, d, d, d);
382 addcolor(unsc, ctmp);
383 }
384 return(0);
385 }
386 /* else need to sample */
387 dimlist[ndims++] = (int)(size_t)ndp->mp;
388 ndims++;
389 for (n = dfp->ncomp; n--; ) { /* loop over components */
390 dimlist[ndims-1] = n + 9438;
391 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
392 }
393 ndims -= 2;
394 return(ntotal);
395 }
396
397 /* Color a ray that hit a BSDF material */
398 int
399 m_bsdf(OBJREC *m, RAY *r)
400 {
401 int hitfront;
402 COLOR ctmp;
403 SDError ec;
404 FVECT upvec, vtmp;
405 MFUNC *mf;
406 BSDFDAT nd;
407 /* check arguments */
408 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
409 (m->oargs.nfargs % 3))
410 objerror(m, USER, "bad # arguments");
411 /* record surface struck */
412 hitfront = (r->rod > 0);
413 /* load cal file */
414 mf = getfunc(m, 5, 0x1d, 1);
415 /* get thickness */
416 nd.thick = evalue(mf->ep[0]);
417 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
418 nd.thick = .0;
419 /* check shadow */
420 if (r->crtype & SHADOW) {
421 if (nd.thick != 0)
422 raytrans(r); /* pass-through */
423 return(1); /* or shadow */
424 }
425 /* check other rays to pass */
426 if (nd.thick != 0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
427 nd.thick > 0 ^ hitfront)) {
428 raytrans(r); /* hide our proxy */
429 return(1);
430 }
431 /* get BSDF data */
432 nd.sd = loadBSDF(m->oargs.sarg[1]);
433 /* diffuse reflectance */
434 if (hitfront) {
435 if (m->oargs.nfargs < 3)
436 setcolor(nd.rdiff, .0, .0, .0);
437 else
438 setcolor(nd.rdiff, m->oargs.farg[0],
439 m->oargs.farg[1],
440 m->oargs.farg[2]);
441 } else {
442 if (m->oargs.nfargs < 6) { /* check invisible backside */
443 if (!backvis && (nd.sd->rb == NULL) &
444 (nd.sd->tf == NULL)) {
445 SDfreeCache(nd.sd);
446 raytrans(r);
447 return(1);
448 }
449 setcolor(nd.rdiff, .0, .0, .0);
450 } else
451 setcolor(nd.rdiff, m->oargs.farg[3],
452 m->oargs.farg[4],
453 m->oargs.farg[5]);
454 }
455 /* diffuse transmittance */
456 if (m->oargs.nfargs < 9)
457 setcolor(nd.tdiff, .0, .0, .0);
458 else
459 setcolor(nd.tdiff, m->oargs.farg[6],
460 m->oargs.farg[7],
461 m->oargs.farg[8]);
462 nd.mp = m;
463 nd.pr = r;
464 /* get modifiers */
465 raytexture(r, m->omod);
466 /* modify diffuse values */
467 multcolor(nd.rdiff, r->pcol);
468 multcolor(nd.tdiff, r->pcol);
469 /* get up vector */
470 upvec[0] = evalue(mf->ep[1]);
471 upvec[1] = evalue(mf->ep[2]);
472 upvec[2] = evalue(mf->ep[3]);
473 /* return to world coords */
474 if (mf->f != &unitxf) {
475 multv3(upvec, upvec, mf->f->xfm);
476 nd.thick *= mf->f->sca;
477 }
478 raynormal(nd.pnorm, r);
479 /* compute local BSDF xform */
480 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
481 if (!ec) {
482 nd.vray[0] = -r->rdir[0];
483 nd.vray[1] = -r->rdir[1];
484 nd.vray[2] = -r->rdir[2];
485 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
486 }
487 if (!ec)
488 ec = SDinvXform(nd.fromloc, nd.toloc);
489 /* determine BSDF resolution */
490 if (!ec)
491 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
492 SDqueryMin+SDqueryMax, nd.sd);
493 nd.thru_psa = .0;
494 if (!ec && nd.thick != 0 && r->crtype & (SPECULAR|AMBIENT)) {
495 FVECT vthru;
496 vthru[0] = -nd.vray[0];
497 vthru[1] = -nd.vray[1];
498 vthru[2] = -nd.vray[2];
499 ec = SDsizeBSDF(&nd.thru_psa, nd.vray, vthru,
500 SDqueryMin, nd.sd);
501 }
502 if (ec) {
503 objerror(m, WARNING, transSDError(ec));
504 SDfreeCache(nd.sd);
505 return(1);
506 }
507 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
508 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
509 if (!hitfront) { /* perturb normal towards hit */
510 nd.pnorm[0] = -nd.pnorm[0];
511 nd.pnorm[1] = -nd.pnorm[1];
512 nd.pnorm[2] = -nd.pnorm[2];
513 }
514 /* sample reflection */
515 sample_sdf(&nd, SDsampSpR);
516 /* sample transmission */
517 sample_sdf(&nd, SDsampSpT);
518 /* compute indirect diffuse */
519 copycolor(ctmp, nd.rdiff);
520 addcolor(ctmp, nd.runsamp);
521 if (bright(ctmp) > FTINY) { /* ambient from reflection */
522 if (!hitfront)
523 flipsurface(r);
524 multambient(ctmp, r, nd.pnorm);
525 addcolor(r->rcol, ctmp);
526 if (!hitfront)
527 flipsurface(r);
528 }
529 copycolor(ctmp, nd.tdiff);
530 addcolor(ctmp, nd.tunsamp);
531 if (bright(ctmp) > FTINY) { /* ambient from other side */
532 FVECT bnorm;
533 if (hitfront)
534 flipsurface(r);
535 bnorm[0] = -nd.pnorm[0];
536 bnorm[1] = -nd.pnorm[1];
537 bnorm[2] = -nd.pnorm[2];
538 if (nd.thick != 0) { /* proxy with offset? */
539 VCOPY(vtmp, r->rop);
540 VSUM(r->rop, vtmp, r->ron, -nd.thick);
541 multambient(ctmp, r, bnorm);
542 VCOPY(r->rop, vtmp);
543 } else
544 multambient(ctmp, r, bnorm);
545 addcolor(r->rcol, ctmp);
546 if (hitfront)
547 flipsurface(r);
548 }
549 /* add direct component */
550 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
551 direct(r, dir_brdf, &nd); /* reflection only */
552 } else if (nd.thick == 0) {
553 direct(r, dir_bsdf, &nd); /* thin surface scattering */
554 } else {
555 direct(r, dir_brdf, &nd); /* reflection first */
556 VCOPY(vtmp, r->rop); /* offset for transmitted */
557 VSUM(r->rop, vtmp, r->ron, -nd.thick);
558 direct(r, dir_btdf, &nd); /* separate transmission */
559 VCOPY(r->rop, vtmp);
560 }
561 /* clean up */
562 SDfreeCache(nd.sd);
563 return(1);
564 }