1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: m_bsdf.c,v 2.74 2024/09/18 19:52:35 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Shading for materials with BSDFs taken from XML data files |
6 |
*/ |
7 |
|
8 |
#include "copyright.h" |
9 |
|
10 |
#include "ray.h" |
11 |
#include "otypes.h" |
12 |
#include "ambient.h" |
13 |
#include "source.h" |
14 |
#include "func.h" |
15 |
#include "bsdf.h" |
16 |
#include "random.h" |
17 |
#include "pmapmat.h" |
18 |
|
19 |
/* |
20 |
* Arguments to this material include optional diffuse colors. |
21 |
* String arguments include the BSDF and function files. |
22 |
* For the MAT_BSDF type, a non-zero thickness causes the useful behavior |
23 |
* of translating transmitted rays this distance beneath the surface |
24 |
* (opposite the surface normal) to bypass any intervening geometry. |
25 |
* Translation only affects scattered, non-source-directed samples. |
26 |
* A non-zero thickness has the further side-effect that an unscattered |
27 |
* (view) ray will pass right through our material, making the BSDF |
28 |
* surface invisible and showing the proxied geometry instead. Thickness |
29 |
* has the further effect of turning off reflection on the reverse side so |
30 |
* rays heading in the opposite direction pass unimpeded through the BSDF |
31 |
* surface. A paired surface may be placed on the opposide side of |
32 |
* the detail geometry, less than this thickness away, if a two-way |
33 |
* proxy is desired. Note that the sign of the thickness is important. |
34 |
* A positive thickness hides geometry behind the BSDF surface and uses |
35 |
* front reflectance and transmission properties. A negative thickness |
36 |
* hides geometry in front of the surface when rays hit from behind, |
37 |
* and applies only the transmission and backside reflectance properties. |
38 |
* Reflection is ignored on the hidden side, as those rays pass through. |
39 |
* For the MAT_ABSDF type, we check for a strong "through" component. |
40 |
* Such a component will cause direct rays to pass through unscattered. |
41 |
* A separate test prevents over-counting by dropping samples that are |
42 |
* too close to this "through" direction. BSDFs with such a through direction |
43 |
* will also have a view component, meaning they are somewhat see-through. |
44 |
* A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF |
45 |
* type with no strong through component. |
46 |
* The "up" vector for the BSDF is given by three variables, defined |
47 |
* (along with the thickness) by the named function file, or '.' if none. |
48 |
* Together with the surface normal, this defines the local coordinate |
49 |
* system for the BSDF. |
50 |
* We do not reorient the surface, so if the BSDF has no back-side |
51 |
* reflectance and none is given in the real arguments, a BSDF surface |
52 |
* with zero thickness will appear black when viewed from behind |
53 |
* unless backface visibility is on, when it becomes invisible. |
54 |
* The diffuse arguments are added to components in the BSDF file, |
55 |
* not multiplied. However, patterns affect this material as a multiplier |
56 |
* on everything except non-diffuse reflection. |
57 |
* |
58 |
* Arguments for MAT_ABSDF are: |
59 |
* 5+ BSDFfile ux uy uz funcfile transform |
60 |
* 0 |
61 |
* 0|3|6|9 rdf gdf bdf |
62 |
* rdb gdb bdb |
63 |
* rdt gdt bdt |
64 |
* |
65 |
* Arguments for MAT_BSDF are: |
66 |
* 6+ thick BSDFfile ux uy uz funcfile transform |
67 |
* 0 |
68 |
* 0|3|6|9 rdf gdf bdf |
69 |
* rdb gdb bdb |
70 |
* rdt gdt bdt |
71 |
*/ |
72 |
|
73 |
/* |
74 |
* Note that our reverse ray-tracing process means that the positions |
75 |
* of incoming and outgoing vectors may be reversed in our calls |
76 |
* to the BSDF library. This is usually fine, since the bidirectional nature |
77 |
* of the BSDF (that's what the 'B' stands for) means it all works out. |
78 |
*/ |
79 |
|
80 |
typedef struct { |
81 |
OBJREC *mp; /* material pointer */ |
82 |
RAY *pr; /* intersected ray */ |
83 |
FVECT pnorm; /* perturbed surface normal */ |
84 |
FVECT vray; /* local outgoing (return) vector */ |
85 |
double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */ |
86 |
RREAL toloc[3][3]; /* world to local BSDF coords */ |
87 |
RREAL fromloc[3][3]; /* local BSDF coords to world */ |
88 |
double thick; /* surface thickness */ |
89 |
SCOLOR cthru; /* "through" component for MAT_ABSDF */ |
90 |
SCOLOR cthru_surr; /* surround for "through" component */ |
91 |
SDData *sd; /* loaded BSDF data */ |
92 |
SCOLOR rdiff; /* diffuse reflection */ |
93 |
SCOLOR runsamp; /* BSDF hemispherical reflection */ |
94 |
SCOLOR tdiff; /* diffuse transmission */ |
95 |
SCOLOR tunsamp; /* BSDF hemispherical transmission */ |
96 |
} BSDFDAT; /* BSDF material data */ |
97 |
|
98 |
#define cvt_sdcolor(scv, svp) ccy2scolor(&(svp)->spec, (svp)->cieY, scv) |
99 |
|
100 |
typedef struct { |
101 |
double vy; /* brightness (for sorting) */ |
102 |
FVECT tdir; /* through sample direction (normalized) */ |
103 |
SCOLOR vcol; /* BTDF color */ |
104 |
} PEAKSAMP; /* BTDF peak sample */ |
105 |
|
106 |
/* Comparison function to put near-peak values in descending order */ |
107 |
static int |
108 |
cmp_psamp(const void *p1, const void *p2) |
109 |
{ |
110 |
double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy; |
111 |
if (diff > 0) return(-1); |
112 |
if (diff < 0) return(1); |
113 |
return(0); |
114 |
} |
115 |
|
116 |
/* Compute "through" component color for MAT_ABSDF */ |
117 |
static void |
118 |
compute_through(BSDFDAT *ndp) |
119 |
{ |
120 |
#define NDIR2CHECK 29 |
121 |
static const float dir2check[NDIR2CHECK][2] = { |
122 |
{0, 0}, {-0.6, 0}, {0, 0.6}, |
123 |
{0, -0.6}, {0.6, 0}, {-0.6, 0.6}, |
124 |
{-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6}, |
125 |
{-1.2, 0}, {0, 1.2}, {0, -1.2}, |
126 |
{1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2}, |
127 |
{1.2, 1.2}, {1.2, -1.2}, {-1.8, 0}, |
128 |
{0, 1.8}, {0, -1.8}, {1.8, 0}, |
129 |
{-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8}, |
130 |
{1.8, -1.8}, {-2.4, 0}, {0, 2.4}, |
131 |
{0, -2.4}, {2.4, 0}, |
132 |
}; |
133 |
PEAKSAMP psamp[NDIR2CHECK]; |
134 |
SDSpectralDF *dfp; |
135 |
FVECT pdir; |
136 |
double tomega, srchrad; |
137 |
double tomsum, tomsurr; |
138 |
SCOLOR vpeak, vsurr, btdiff; |
139 |
double vypeak; |
140 |
int i, ns; |
141 |
SDError ec; |
142 |
|
143 |
if (ndp->pr->rod > 0) |
144 |
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
145 |
else |
146 |
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; |
147 |
|
148 |
if (dfp == NULL) |
149 |
return; /* no specular transmission */ |
150 |
if (sintens(ndp->pr->pcol) <= FTINY) |
151 |
return; /* pattern is black, here */ |
152 |
srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */ |
153 |
for (i = 0; i < NDIR2CHECK; i++) { |
154 |
SDValue sv; |
155 |
psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad; |
156 |
psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad; |
157 |
psamp[i].tdir[2] = -ndp->vray[2]; |
158 |
normalize(psamp[i].tdir); |
159 |
ec = SDevalBSDF(&sv, ndp->vray, psamp[i].tdir, ndp->sd); |
160 |
if (ec) |
161 |
goto baderror; |
162 |
cvt_sdcolor(psamp[i].vcol, &sv); |
163 |
psamp[i].vy = sv.cieY; |
164 |
} |
165 |
qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp); |
166 |
if (psamp[0].vy <= FTINY) |
167 |
return; /* zero BTDF here */ |
168 |
scolorblack(vpeak); |
169 |
scolorblack(vsurr); |
170 |
vypeak = tomsum = tomsurr = 0; /* combine top unique values */ |
171 |
ns = 0; |
172 |
for (i = 0; i < NDIR2CHECK; i++) { |
173 |
if (i && psamp[i].vy == psamp[i-1].vy) |
174 |
continue; /* assume duplicate sample */ |
175 |
|
176 |
ec = SDsizeBSDF(&tomega, ndp->vray, psamp[i].tdir, |
177 |
SDqueryMin, ndp->sd); |
178 |
if (ec) |
179 |
goto baderror; |
180 |
|
181 |
scalescolor(psamp[i].vcol, tomega); |
182 |
/* not part of peak? */ |
183 |
if (tomega > 1.5*dfp->minProjSA || |
184 |
vypeak > 8.*psamp[i].vy*ns) { |
185 |
if (!i) return; /* abort */ |
186 |
saddscolor(vsurr, psamp[i].vcol); |
187 |
tomsurr += tomega; |
188 |
continue; |
189 |
} |
190 |
saddscolor(vpeak, psamp[i].vcol); |
191 |
tomsum += tomega; |
192 |
vypeak += psamp[i].vy; |
193 |
++ns; |
194 |
} |
195 |
if (tomsurr < 0.2*tomsum) /* insufficient surround? */ |
196 |
return; |
197 |
scalescolor(vsurr, 1./tomsurr); /* surround is avg. BTDF */ |
198 |
if (ndp->vray[2] > 0) /* get diffuse BTDF */ |
199 |
cvt_sdcolor(btdiff, &ndp->sd->tLambFront); |
200 |
else |
201 |
cvt_sdcolor(btdiff, &ndp->sd->tLambBack); |
202 |
scalescolor(btdiff, (1./PI)); |
203 |
for (i = NCSAMP; i--; ) { /* remove diffuse contrib. */ |
204 |
if ((vpeak[i] -= tomsum*btdiff[i]) < 0) |
205 |
vpeak[i] = 0; |
206 |
if ((vsurr[i] -= btdiff[i]) < 0) |
207 |
vsurr[i] = 0; |
208 |
} |
209 |
if (pbright(vpeak) < .0005) /* < 0.05% specular? */ |
210 |
return; |
211 |
smultscolor(vsurr, ndp->pr->pcol); /* modify by pattern */ |
212 |
smultscolor(vpeak, ndp->pr->pcol); |
213 |
copyscolor(ndp->cthru_surr, vsurr); |
214 |
copyscolor(ndp->cthru, vpeak); |
215 |
return; |
216 |
baderror: |
217 |
objerror(ndp->mp, USER, transSDError(ec)); |
218 |
#undef NDIR2CHECK |
219 |
} |
220 |
|
221 |
/* Jitter ray sample according to projected solid angle and specjitter */ |
222 |
static void |
223 |
bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa) |
224 |
{ |
225 |
VCOPY(vres, ndp->vray); |
226 |
if (specjitter < 1.) |
227 |
sr_psa *= specjitter; |
228 |
if (sr_psa <= FTINY) |
229 |
return; |
230 |
vres[0] += sr_psa*(.5 - frandom()); |
231 |
vres[1] += sr_psa*(.5 - frandom()); |
232 |
normalize(vres); |
233 |
} |
234 |
|
235 |
/* Get BSDF specular for direct component, returning true if OK to proceed */ |
236 |
static int |
237 |
direct_specular_OK(SCOLOR scval, FVECT ldir, double omega, BSDFDAT *ndp) |
238 |
{ |
239 |
int nsamp = 1; |
240 |
int scnt = 0; |
241 |
FVECT vsrc; |
242 |
double tomega, tomega2; |
243 |
double tsr, sd[2]; |
244 |
SCOLOR csmp, cdiff; |
245 |
double diffY; |
246 |
SDValue sv; |
247 |
SDError ec; |
248 |
int i; |
249 |
/* in case we fail */ |
250 |
scolorblack(scval); |
251 |
/* transform source direction */ |
252 |
if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone) |
253 |
return(0); |
254 |
/* check indirect over-counting */ |
255 |
if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && sintens(ndp->cthru) > FTINY) { |
256 |
double dx = vsrc[0] + ndp->vray[0]; |
257 |
double dy = vsrc[1] + ndp->vray[1]; |
258 |
SDSpectralDF *dfp = (ndp->pr->rod > 0) ? |
259 |
((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) : |
260 |
((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ; |
261 |
|
262 |
tomega = omega*fabs(vsrc[2]); |
263 |
if (dx*dx + dy*dy <= (2.5*4./PI)*(tomega + dfp->minProjSA + |
264 |
2.*sqrt(tomega*dfp->minProjSA))) { |
265 |
if (sintens(ndp->cthru_surr) <= FTINY) |
266 |
return(0); |
267 |
copyscolor(scval, ndp->cthru_surr); |
268 |
return(1); /* return non-zero surround BTDF */ |
269 |
} |
270 |
} |
271 |
/* will discount diffuse portion */ |
272 |
switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) { |
273 |
case 3: |
274 |
if (ndp->sd->rf == NULL) |
275 |
return(0); /* all diffuse */ |
276 |
sv = ndp->sd->rLambFront; |
277 |
break; |
278 |
case 0: |
279 |
if (ndp->sd->rb == NULL) |
280 |
return(0); /* all diffuse */ |
281 |
sv = ndp->sd->rLambBack; |
282 |
break; |
283 |
case 1: |
284 |
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
285 |
return(0); /* all diffuse */ |
286 |
sv = ndp->sd->tLambFront; |
287 |
break; |
288 |
case 2: |
289 |
if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL)) |
290 |
return(0); /* all diffuse */ |
291 |
sv = ndp->sd->tLambBack; |
292 |
break; |
293 |
} |
294 |
if (sv.cieY > FTINY) { |
295 |
diffY = sv.cieY *= 1./PI; |
296 |
cvt_sdcolor(cdiff, &sv); |
297 |
} else { |
298 |
diffY = 0; |
299 |
scolorblack(cdiff); |
300 |
} |
301 |
ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd); |
302 |
if (ec) |
303 |
goto baderror; |
304 |
/* check if sampling BSDF */ |
305 |
if ((tsr = sqrt(tomega)) > 0) { |
306 |
nsamp = 4.*specjitter*ndp->pr->rweight + .5; |
307 |
nsamp += !nsamp; |
308 |
} |
309 |
for (i = nsamp; i--; ) { /* jitter to fuzz BSDF cells */ |
310 |
FVECT vjit; |
311 |
bsdf_jitter(vjit, ndp, tsr); |
312 |
/* compute BSDF */ |
313 |
ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd); |
314 |
if (ec) |
315 |
goto baderror; |
316 |
if (sv.cieY - diffY <= FTINY) { |
317 |
++scnt; /* still counts as 0 contribution */ |
318 |
continue; |
319 |
} |
320 |
/* check for variable resolution */ |
321 |
ec = SDsizeBSDF(&tomega2, vjit, vsrc, SDqueryMin, ndp->sd); |
322 |
if (ec) |
323 |
goto baderror; |
324 |
if (tomega2 < .12*tomega) |
325 |
continue; /* not safe to include */ |
326 |
cvt_sdcolor(csmp, &sv); |
327 |
saddscolor(scval, csmp); |
328 |
++scnt; |
329 |
} |
330 |
if (!scnt) /* no valid specular samples? */ |
331 |
return(0); |
332 |
|
333 |
scalescolor(scval, 1./scnt); /* weighted average BSDF */ |
334 |
/* subtract diffuse contribution */ |
335 |
for (i = NCSAMP*(diffY > FTINY); i--; ) |
336 |
if ((scval[i] -= cdiff[i]) < 0) |
337 |
scval[i] = 0; |
338 |
return(1); |
339 |
baderror: |
340 |
objerror(ndp->mp, USER, transSDError(ec)); |
341 |
return(0); /* gratis return */ |
342 |
} |
343 |
|
344 |
/* Compute source contribution for BSDF (reflected & transmitted) */ |
345 |
static void |
346 |
dir_bsdf( |
347 |
SCOLOR scval, /* returned coefficient */ |
348 |
void *nnp, /* material data */ |
349 |
FVECT ldir, /* light source direction */ |
350 |
double omega /* light source size */ |
351 |
) |
352 |
{ |
353 |
BSDFDAT *np = (BSDFDAT *)nnp; |
354 |
double ldot; |
355 |
double dtmp; |
356 |
SCOLOR sctmp; |
357 |
|
358 |
scolorblack(scval); |
359 |
|
360 |
ldot = DOT(np->pnorm, ldir); |
361 |
if ((-FTINY <= ldot) & (ldot <= FTINY)) |
362 |
return; |
363 |
|
364 |
if (ldot > 0 && sintens(np->rdiff) > FTINY) { |
365 |
/* |
366 |
* Compute diffuse reflected component |
367 |
*/ |
368 |
copyscolor(sctmp, np->rdiff); |
369 |
dtmp = ldot * omega * (1./PI); |
370 |
scalescolor(sctmp, dtmp); |
371 |
saddscolor(scval, sctmp); |
372 |
} |
373 |
if (ldot < 0 && sintens(np->tdiff) > FTINY) { |
374 |
/* |
375 |
* Compute diffuse transmission |
376 |
*/ |
377 |
copyscolor(sctmp, np->tdiff); |
378 |
dtmp = -ldot * omega * (1./PI); |
379 |
scalescolor(sctmp, dtmp); |
380 |
saddscolor(scval, sctmp); |
381 |
} |
382 |
if (ambRayInPmap(np->pr)) |
383 |
return; /* specular already in photon map */ |
384 |
/* |
385 |
* Compute specular scattering coefficient using BSDF |
386 |
*/ |
387 |
if (!direct_specular_OK(sctmp, ldir, omega, np)) |
388 |
return; |
389 |
if (ldot < 0) { /* pattern for specular transmission */ |
390 |
smultscolor(sctmp, np->pr->pcol); |
391 |
dtmp = -ldot * omega; |
392 |
} else |
393 |
dtmp = ldot * omega; |
394 |
scalescolor(sctmp, dtmp); |
395 |
saddscolor(scval, sctmp); |
396 |
} |
397 |
|
398 |
/* Compute source contribution for BSDF (reflected only) */ |
399 |
static void |
400 |
dir_brdf( |
401 |
SCOLOR scval, /* returned coefficient */ |
402 |
void *nnp, /* material data */ |
403 |
FVECT ldir, /* light source direction */ |
404 |
double omega /* light source size */ |
405 |
) |
406 |
{ |
407 |
BSDFDAT *np = (BSDFDAT *)nnp; |
408 |
double ldot; |
409 |
double dtmp; |
410 |
SCOLOR sctmp; |
411 |
|
412 |
scolorblack(scval); |
413 |
|
414 |
ldot = DOT(np->pnorm, ldir); |
415 |
|
416 |
if (ldot <= FTINY) |
417 |
return; |
418 |
|
419 |
if (sintens(np->rdiff) > FTINY) { |
420 |
/* |
421 |
* Compute diffuse reflected component |
422 |
*/ |
423 |
copyscolor(sctmp, np->rdiff); |
424 |
dtmp = ldot * omega * (1./PI); |
425 |
scalescolor(sctmp, dtmp); |
426 |
saddscolor(scval, sctmp); |
427 |
} |
428 |
if (ambRayInPmap(np->pr)) |
429 |
return; /* specular already in photon map */ |
430 |
/* |
431 |
* Compute specular reflection coefficient using BSDF |
432 |
*/ |
433 |
if (!direct_specular_OK(sctmp, ldir, omega, np)) |
434 |
return; |
435 |
dtmp = ldot * omega; |
436 |
scalescolor(sctmp, dtmp); |
437 |
saddscolor(scval, sctmp); |
438 |
} |
439 |
|
440 |
/* Compute source contribution for BSDF (transmitted only) */ |
441 |
static void |
442 |
dir_btdf( |
443 |
SCOLOR scval, /* returned coefficient */ |
444 |
void *nnp, /* material data */ |
445 |
FVECT ldir, /* light source direction */ |
446 |
double omega /* light source size */ |
447 |
) |
448 |
{ |
449 |
BSDFDAT *np = (BSDFDAT *)nnp; |
450 |
double ldot; |
451 |
double dtmp; |
452 |
SCOLOR sctmp; |
453 |
|
454 |
scolorblack(scval); |
455 |
|
456 |
ldot = DOT(np->pnorm, ldir); |
457 |
|
458 |
if (ldot >= -FTINY) |
459 |
return; |
460 |
|
461 |
if (sintens(np->tdiff) > FTINY) { |
462 |
/* |
463 |
* Compute diffuse transmission |
464 |
*/ |
465 |
copyscolor(sctmp, np->tdiff); |
466 |
dtmp = -ldot * omega * (1./PI); |
467 |
scalescolor(sctmp, dtmp); |
468 |
saddscolor(scval, sctmp); |
469 |
} |
470 |
if (ambRayInPmap(np->pr)) |
471 |
return; /* specular already in photon map */ |
472 |
/* |
473 |
* Compute specular scattering coefficient using BSDF |
474 |
*/ |
475 |
if (!direct_specular_OK(sctmp, ldir, omega, np)) |
476 |
return; |
477 |
/* full pattern on transmission */ |
478 |
smultscolor(sctmp, np->pr->pcol); |
479 |
dtmp = -ldot * omega; |
480 |
scalescolor(sctmp, dtmp); |
481 |
saddscolor(scval, sctmp); |
482 |
} |
483 |
|
484 |
/* Sample separate BSDF component */ |
485 |
static int |
486 |
sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit) |
487 |
{ |
488 |
const int hasthru = (xmit && |
489 |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
490 |
&& sintens(ndp->cthru) > FTINY); |
491 |
int nstarget = 1; |
492 |
int nsent = 0; |
493 |
int n; |
494 |
SDError ec; |
495 |
SDValue bsv; |
496 |
double xrand; |
497 |
FVECT vsmp, vinc; |
498 |
RAY sr; |
499 |
/* multiple samples? */ |
500 |
if (specjitter > 1.5) { |
501 |
nstarget = specjitter*ndp->pr->rweight + .5; |
502 |
nstarget += !nstarget; |
503 |
} |
504 |
/* run through our samples */ |
505 |
for (n = 0; n < nstarget; n++) { |
506 |
if (nstarget == 1) { /* stratify random variable */ |
507 |
xrand = urand(ilhash(dimlist,ndims)+samplendx); |
508 |
if (specjitter < 1.) |
509 |
xrand = .5 + specjitter*(xrand-.5); |
510 |
} else { |
511 |
xrand = (n + frandom())/(double)nstarget; |
512 |
} |
513 |
SDerrorDetail[0] = '\0'; /* sample direction & coef. */ |
514 |
bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]); |
515 |
VCOPY(vinc, vsmp); /* to compare after */ |
516 |
ec = SDsampComponent(&bsv, vsmp, xrand, dcp); |
517 |
if (ec) |
518 |
objerror(ndp->mp, USER, transSDError(ec)); |
519 |
if (bsv.cieY <= FTINY) /* zero component? */ |
520 |
break; |
521 |
if (hasthru) { /* check for view ray */ |
522 |
double dx = vinc[0] + vsmp[0]; |
523 |
double dy = vinc[1] + vsmp[1]; |
524 |
if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0]) |
525 |
continue; /* exclude view sample */ |
526 |
} |
527 |
/* map non-view sample->world */ |
528 |
if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone) |
529 |
break; |
530 |
/* spawn a specular ray */ |
531 |
if (nstarget > 1) |
532 |
bsv.cieY /= (double)nstarget; |
533 |
cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */ |
534 |
if (xmit) /* apply pattern on transmit */ |
535 |
smultscolor(sr.rcoef, ndp->pr->pcol); |
536 |
if (rayorigin(&sr, xmit ? TSPECULAR : RSPECULAR, ndp->pr, sr.rcoef) < 0) { |
537 |
if (!n & (nstarget > 1)) { |
538 |
n = nstarget; /* avoid infinitue loop */ |
539 |
nstarget = nstarget*sr.rweight/(minweight + 1e-20); |
540 |
if (n == nstarget) break; |
541 |
n = -1; /* moved target */ |
542 |
} |
543 |
continue; /* try again */ |
544 |
} |
545 |
if (xmit && ndp->thick != 0) /* need to offset origin? */ |
546 |
VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick); |
547 |
rayvalue(&sr); /* send & evaluate sample */ |
548 |
smultscolor(sr.rcol, sr.rcoef); |
549 |
saddscolor(ndp->pr->rcol, sr.rcol); |
550 |
++nsent; |
551 |
} |
552 |
return(nsent); |
553 |
} |
554 |
|
555 |
/* Sample non-diffuse components of BSDF */ |
556 |
static int |
557 |
sample_sdf(BSDFDAT *ndp, int sflags) |
558 |
{ |
559 |
int hasthru = (sflags == SDsampSpT && |
560 |
!(ndp->pr->crtype & (SPECULAR|AMBIENT)) |
561 |
&& sintens(ndp->cthru) > FTINY); |
562 |
int n, ntotal = 0; |
563 |
double b = 0; |
564 |
SDSpectralDF *dfp; |
565 |
COLORV *unsc; |
566 |
|
567 |
if (sflags == SDsampSpT) { |
568 |
unsc = ndp->tunsamp; |
569 |
if (ndp->pr->rod > 0) |
570 |
dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb; |
571 |
else |
572 |
dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf; |
573 |
} else /* sflags == SDsampSpR */ { |
574 |
unsc = ndp->runsamp; |
575 |
if (ndp->pr->rod > 0) |
576 |
dfp = ndp->sd->rf; |
577 |
else |
578 |
dfp = ndp->sd->rb; |
579 |
} |
580 |
scolorblack(unsc); |
581 |
if (dfp == NULL) /* no specular component? */ |
582 |
return(0); |
583 |
|
584 |
if (hasthru) { /* separate view sample? */ |
585 |
RAY tr; |
586 |
if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) { |
587 |
VCOPY(tr.rdir, ndp->pr->rdir); |
588 |
rayvalue(&tr); |
589 |
smultscolor(tr.rcol, tr.rcoef); |
590 |
saddscolor(ndp->pr->rcol, tr.rcol); |
591 |
ndp->pr->rxt = ndp->pr->rot + raydistance(&tr); |
592 |
++ntotal; |
593 |
b = pbright(ndp->cthru); |
594 |
} else |
595 |
hasthru = 0; |
596 |
} |
597 |
if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */ |
598 |
b = 0; |
599 |
} else { |
600 |
FVECT vjit; |
601 |
bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]); |
602 |
b = SDdirectHemi(vjit, sflags, ndp->sd) - b; |
603 |
b *= (b > 0); |
604 |
} |
605 |
if (b <= specthresh+FTINY) { /* below sampling threshold? */ |
606 |
if (b > FTINY) { /* XXX no color from BSDF */ |
607 |
if (sflags == SDsampSpT) { |
608 |
copyscolor(unsc, ndp->pr->pcol); |
609 |
scalescolor(unsc, b); |
610 |
} else /* no pattern on reflection */ |
611 |
setscolor(unsc, b, b, b); |
612 |
} |
613 |
return(ntotal); |
614 |
} |
615 |
dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */ |
616 |
ndims += 2; |
617 |
for (n = dfp->ncomp; n--; ) { /* loop over components */ |
618 |
dimlist[ndims-1] = n + 9438; |
619 |
ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT); |
620 |
} |
621 |
ndims -= 2; |
622 |
return(ntotal); |
623 |
} |
624 |
|
625 |
/* Color a ray that hit a BSDF material */ |
626 |
int |
627 |
m_bsdf(OBJREC *m, RAY *r) |
628 |
{ |
629 |
const int hasthick = (m->otype == MAT_BSDF); |
630 |
const int hitfront = (r->rod > 0); |
631 |
SCOLOR sctmp; |
632 |
SDError ec; |
633 |
FVECT upvec, vtmp; |
634 |
MFUNC *mf; |
635 |
BSDFDAT nd; |
636 |
/* check backface visibility */ |
637 |
if (!hitfront & !backvis) { |
638 |
raytrans(r); |
639 |
return(1); |
640 |
} |
641 |
/* check arguments */ |
642 |
if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) | |
643 |
(m->oargs.nfargs % 3)) |
644 |
objerror(m, USER, "bad # arguments"); |
645 |
/* load cal file */ |
646 |
mf = hasthick ? getfunc(m, 5, 0x1d, 1) |
647 |
: getfunc(m, 4, 0xe, 1) ; |
648 |
setfunc(m, r); |
649 |
nd.thick = 0; /* set thickness */ |
650 |
if (hasthick) { |
651 |
nd.thick = evalue(mf->ep[0]); |
652 |
if ((-FTINY <= nd.thick) & (nd.thick <= FTINY)) |
653 |
nd.thick = 0; |
654 |
} |
655 |
/* check other rays to pass */ |
656 |
if (nd.thick != 0 && (r->crtype & SHADOW || |
657 |
!(r->crtype & (SPECULAR|AMBIENT)) || |
658 |
(nd.thick > 0) ^ hitfront)) { |
659 |
raytrans(r); /* hide our proxy */ |
660 |
return(1); |
661 |
} |
662 |
if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */ |
663 |
return(1); |
664 |
nd.mp = m; |
665 |
nd.pr = r; |
666 |
/* get BSDF data */ |
667 |
nd.sd = loadBSDF(m->oargs.sarg[hasthick]); |
668 |
/* early shadow check #2 */ |
669 |
if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) { |
670 |
SDfreeCache(nd.sd); |
671 |
return(1); |
672 |
} |
673 |
/* diffuse components */ |
674 |
if (hitfront) { |
675 |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront); |
676 |
if (m->oargs.nfargs >= 3) { |
677 |
setscolor(sctmp, m->oargs.farg[0], |
678 |
m->oargs.farg[1], |
679 |
m->oargs.farg[2]); |
680 |
saddscolor(nd.rdiff, sctmp); |
681 |
} |
682 |
cvt_sdcolor(nd.tdiff, &nd.sd->tLambFront); |
683 |
} else { |
684 |
cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack); |
685 |
if (m->oargs.nfargs >= 6) { |
686 |
setscolor(sctmp, m->oargs.farg[3], |
687 |
m->oargs.farg[4], |
688 |
m->oargs.farg[5]); |
689 |
saddscolor(nd.rdiff, sctmp); |
690 |
} |
691 |
cvt_sdcolor(nd.tdiff, &nd.sd->tLambBack); |
692 |
} |
693 |
if (m->oargs.nfargs >= 9) { /* add diffuse transmittance? */ |
694 |
setscolor(sctmp, m->oargs.farg[6], |
695 |
m->oargs.farg[7], |
696 |
m->oargs.farg[8]); |
697 |
saddscolor(nd.tdiff, sctmp); |
698 |
} |
699 |
/* get modifiers */ |
700 |
raytexture(r, m->omod); |
701 |
/* modify diffuse values */ |
702 |
smultscolor(nd.rdiff, r->pcol); |
703 |
smultscolor(nd.tdiff, r->pcol); |
704 |
/* get up vector */ |
705 |
upvec[0] = evalue(mf->ep[hasthick+0]); |
706 |
upvec[1] = evalue(mf->ep[hasthick+1]); |
707 |
upvec[2] = evalue(mf->ep[hasthick+2]); |
708 |
/* return to world coords */ |
709 |
if (mf->fxp != &unitxf) { |
710 |
multv3(upvec, upvec, mf->fxp->xfm); |
711 |
nd.thick *= mf->fxp->sca; |
712 |
} |
713 |
if (r->rox != NULL) { |
714 |
multv3(upvec, upvec, r->rox->f.xfm); |
715 |
nd.thick *= r->rox->f.sca; |
716 |
} |
717 |
raynormal(nd.pnorm, r); |
718 |
/* compute local BSDF xform */ |
719 |
ec = SDcompXform(nd.toloc, nd.pnorm, upvec); |
720 |
if (!ec) { |
721 |
nd.vray[0] = -r->rdir[0]; |
722 |
nd.vray[1] = -r->rdir[1]; |
723 |
nd.vray[2] = -r->rdir[2]; |
724 |
ec = SDmapDir(nd.vray, nd.toloc, nd.vray); |
725 |
} |
726 |
if (ec) { |
727 |
objerror(m, WARNING, "Illegal orientation vector"); |
728 |
SDfreeCache(nd.sd); |
729 |
return(1); |
730 |
} |
731 |
scolorblack(nd.cthru); /* consider through component */ |
732 |
scolorblack(nd.cthru_surr); |
733 |
if (m->otype == MAT_ABSDF) { |
734 |
compute_through(&nd); |
735 |
if (r->crtype & SHADOW) { |
736 |
RAY tr; /* attempt to pass shadow ray */ |
737 |
SDfreeCache(nd.sd); |
738 |
if (rayorigin(&tr, TRANS, r, nd.cthru) < 0) |
739 |
return(1); /* no through component */ |
740 |
VCOPY(tr.rdir, r->rdir); |
741 |
rayvalue(&tr); /* transmit with scaling */ |
742 |
smultscolor(tr.rcol, tr.rcoef); |
743 |
copyscolor(r->rcol, tr.rcol); |
744 |
return(1); /* we're done */ |
745 |
} |
746 |
} |
747 |
ec = SDinvXform(nd.fromloc, nd.toloc); |
748 |
if (!ec) /* determine BSDF resolution */ |
749 |
ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL, |
750 |
SDqueryMin+SDqueryMax, nd.sd); |
751 |
if (ec) |
752 |
objerror(m, USER, transSDError(ec)); |
753 |
|
754 |
nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]); |
755 |
nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]); |
756 |
if (!hitfront) { /* perturb normal towards hit */ |
757 |
nd.pnorm[0] = -nd.pnorm[0]; |
758 |
nd.pnorm[1] = -nd.pnorm[1]; |
759 |
nd.pnorm[2] = -nd.pnorm[2]; |
760 |
} |
761 |
/* sample reflection */ |
762 |
sample_sdf(&nd, SDsampSpR); |
763 |
/* sample transmission */ |
764 |
sample_sdf(&nd, SDsampSpT); |
765 |
/* compute indirect diffuse */ |
766 |
copyscolor(sctmp, nd.rdiff); |
767 |
saddscolor(sctmp, nd.runsamp); |
768 |
if (sintens(sctmp) > FTINY) { /* ambient from reflection */ |
769 |
multambient(sctmp, r, nd.pnorm); |
770 |
saddscolor(r->rcol, sctmp); |
771 |
} |
772 |
copyscolor(sctmp, nd.tdiff); |
773 |
saddscolor(sctmp, nd.tunsamp); |
774 |
if (sintens(sctmp) > FTINY) { /* ambient from other side */ |
775 |
FVECT bnorm; |
776 |
bnorm[0] = -nd.pnorm[0]; |
777 |
bnorm[1] = -nd.pnorm[1]; |
778 |
bnorm[2] = -nd.pnorm[2]; |
779 |
if (nd.thick != 0) { /* proxy with offset? */ |
780 |
VCOPY(vtmp, r->rop); |
781 |
VSUM(r->rop, vtmp, r->ron, nd.thick); |
782 |
multambient(sctmp, r, bnorm); |
783 |
VCOPY(r->rop, vtmp); |
784 |
} else |
785 |
multambient(sctmp, r, bnorm); |
786 |
saddscolor(r->rcol, sctmp); |
787 |
} |
788 |
/* add direct component */ |
789 |
if ((nd.sd->tf == NULL) & (nd.sd->tb == NULL) && |
790 |
sintens(nd.tdiff) <= FTINY) { |
791 |
direct(r, dir_brdf, &nd); /* reflection only */ |
792 |
} else if (nd.thick == 0) { |
793 |
direct(r, dir_bsdf, &nd); /* thin surface scattering */ |
794 |
} else { |
795 |
direct(r, dir_brdf, &nd); /* reflection first */ |
796 |
VCOPY(vtmp, r->rop); /* offset for transmitted */ |
797 |
VSUM(r->rop, vtmp, r->ron, -nd.thick); |
798 |
direct(r, dir_btdf, &nd); /* separate transmission */ |
799 |
VCOPY(r->rop, vtmp); |
800 |
} |
801 |
/* clean up */ |
802 |
SDfreeCache(nd.sd); |
803 |
return(1); |
804 |
} |