ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.73
Committed: Wed Apr 17 16:46:00 2024 UTC (2 weeks, 1 day ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.72: +2 -2 lines
Log Message:
fix(rtrace,rpict,rvu,rcontrib): Potential divide-by-zero with -lw 0

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.72 2024/04/05 01:10:26 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 SCOLOR cthru; /* "through" component for MAT_ABSDF */
90 SCOLOR cthru_surr; /* surround for "through" component */
91 SDData *sd; /* loaded BSDF data */
92 SCOLOR rdiff; /* diffuse reflection */
93 SCOLOR runsamp; /* BSDF hemispherical reflection */
94 SCOLOR tdiff; /* diffuse transmission */
95 SCOLOR tunsamp; /* BSDF hemispherical transmission */
96 } BSDFDAT; /* BSDF material data */
97
98 #define cvt_sdcolor(scv, svp) ccy2scolor(&(svp)->spec, (svp)->cieY, scv)
99
100 typedef struct {
101 double vy; /* brightness (for sorting) */
102 FVECT tdir; /* through sample direction (normalized) */
103 SCOLOR vcol; /* BTDF color */
104 } PEAKSAMP; /* BTDF peak sample */
105
106 /* Comparison function to put near-peak values in descending order */
107 static int
108 cmp_psamp(const void *p1, const void *p2)
109 {
110 double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
111 if (diff > 0) return(-1);
112 if (diff < 0) return(1);
113 return(0);
114 }
115
116 /* Compute "through" component color for MAT_ABSDF */
117 static void
118 compute_through(BSDFDAT *ndp)
119 {
120 #define NDIR2CHECK 29
121 static const float dir2check[NDIR2CHECK][2] = {
122 {0, 0}, {-0.6, 0}, {0, 0.6},
123 {0, -0.6}, {0.6, 0}, {-0.6, 0.6},
124 {-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
125 {-1.2, 0}, {0, 1.2}, {0, -1.2},
126 {1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
127 {1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
128 {0, 1.8}, {0, -1.8}, {1.8, 0},
129 {-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
130 {1.8, -1.8}, {-2.4, 0}, {0, 2.4},
131 {0, -2.4}, {2.4, 0},
132 };
133 PEAKSAMP psamp[NDIR2CHECK];
134 SDSpectralDF *dfp;
135 FVECT pdir;
136 double tomega, srchrad;
137 double tomsum, tomsurr;
138 SCOLOR vpeak, vsurr, btdiff;
139 double vypeak;
140 int i, ns;
141 SDError ec;
142
143 if (ndp->pr->rod > 0)
144 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
145 else
146 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
147
148 if (dfp == NULL)
149 return; /* no specular transmission */
150 if (sintens(ndp->pr->pcol) <= FTINY)
151 return; /* pattern is black, here */
152 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
153 for (i = 0; i < NDIR2CHECK; i++) {
154 SDValue sv;
155 psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
156 psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
157 psamp[i].tdir[2] = -ndp->vray[2];
158 normalize(psamp[i].tdir);
159 ec = SDevalBSDF(&sv, ndp->vray, psamp[i].tdir, ndp->sd);
160 if (ec)
161 goto baderror;
162 cvt_sdcolor(psamp[i].vcol, &sv);
163 psamp[i].vy = sv.cieY;
164 }
165 qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
166 if (psamp[0].vy <= FTINY)
167 return; /* zero BTDF here */
168 scolorblack(vpeak);
169 scolorblack(vsurr);
170 vypeak = tomsum = tomsurr = 0; /* combine top unique values */
171 ns = 0;
172 for (i = 0; i < NDIR2CHECK; i++) {
173 if (i && psamp[i].vy == psamp[i-1].vy)
174 continue; /* assume duplicate sample */
175
176 ec = SDsizeBSDF(&tomega, ndp->vray, psamp[i].tdir,
177 SDqueryMin, ndp->sd);
178 if (ec)
179 goto baderror;
180
181 scalescolor(psamp[i].vcol, tomega);
182 /* not part of peak? */
183 if (tomega > 1.5*dfp->minProjSA ||
184 vypeak > 8.*psamp[i].vy*ns) {
185 if (!i) return; /* abort */
186 saddscolor(vsurr, psamp[i].vcol);
187 tomsurr += tomega;
188 continue;
189 }
190 saddscolor(vpeak, psamp[i].vcol);
191 tomsum += tomega;
192 vypeak += psamp[i].vy;
193 ++ns;
194 }
195 if (tomsurr < 0.2*tomsum) /* insufficient surround? */
196 return;
197 scalescolor(vsurr, 1./tomsurr); /* surround is avg. BTDF */
198 if (ndp->vray[2] > 0) /* get diffuse BTDF */
199 cvt_sdcolor(btdiff, &ndp->sd->tLambFront);
200 else
201 cvt_sdcolor(btdiff, &ndp->sd->tLambBack);
202 scalescolor(btdiff, (1./PI));
203 for (i = NCSAMP; i--; ) { /* remove diffuse contrib. */
204 if ((vpeak[i] -= tomsum*btdiff[i]) < 0)
205 vpeak[i] = 0;
206 if ((vsurr[i] -= btdiff[i]) < 0)
207 vsurr[i] = 0;
208 }
209 if (pbright(vpeak) < .0005) /* < 0.05% specular? */
210 return;
211 smultscolor(vsurr, ndp->pr->pcol); /* modify by pattern */
212 smultscolor(vpeak, ndp->pr->pcol);
213 copyscolor(ndp->cthru_surr, vsurr);
214 copyscolor(ndp->cthru, vpeak);
215 return;
216 baderror:
217 objerror(ndp->mp, USER, transSDError(ec));
218 #undef NDIR2CHECK
219 }
220
221 /* Jitter ray sample according to projected solid angle and specjitter */
222 static void
223 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
224 {
225 VCOPY(vres, ndp->vray);
226 if (specjitter < 1.)
227 sr_psa *= specjitter;
228 if (sr_psa <= FTINY)
229 return;
230 vres[0] += sr_psa*(.5 - frandom());
231 vres[1] += sr_psa*(.5 - frandom());
232 normalize(vres);
233 }
234
235 /* Get BSDF specular for direct component, returning true if OK to proceed */
236 static int
237 direct_specular_OK(SCOLOR scval, FVECT ldir, double omega, BSDFDAT *ndp)
238 {
239 int nsamp = 1;
240 int scnt = 0;
241 FVECT vsrc, vjit;
242 double tomega, tomega2;
243 double tsr, sd[2];
244 SCOLOR csmp, cdiff;
245 double diffY;
246 SDValue sv;
247 SDError ec;
248 int i;
249 /* in case we fail */
250 scolorblack(scval);
251 /* transform source direction */
252 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
253 return(0);
254 /* check indirect over-counting */
255 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && sintens(ndp->cthru) > FTINY) {
256 double dx = vsrc[0] + ndp->vray[0];
257 double dy = vsrc[1] + ndp->vray[1];
258 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
259 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
260 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
261
262 tomega = omega*fabs(vsrc[2]);
263 if (dx*dx + dy*dy <= (2.5*4./PI)*(tomega + dfp->minProjSA +
264 2.*sqrt(tomega*dfp->minProjSA))) {
265 if (sintens(ndp->cthru_surr) <= FTINY)
266 return(0);
267 copyscolor(scval, ndp->cthru_surr);
268 return(1); /* return non-zero surround BTDF */
269 }
270 }
271 /* will discount diffuse portion */
272 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
273 case 3:
274 if (ndp->sd->rf == NULL)
275 return(0); /* all diffuse */
276 sv = ndp->sd->rLambFront;
277 break;
278 case 0:
279 if (ndp->sd->rb == NULL)
280 return(0); /* all diffuse */
281 sv = ndp->sd->rLambBack;
282 break;
283 case 1:
284 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
285 return(0); /* all diffuse */
286 sv = ndp->sd->tLambFront;
287 break;
288 case 2:
289 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
290 return(0); /* all diffuse */
291 sv = ndp->sd->tLambBack;
292 break;
293 }
294 if (sv.cieY > FTINY) {
295 diffY = sv.cieY *= 1./PI;
296 cvt_sdcolor(cdiff, &sv);
297 } else {
298 diffY = 0;
299 scolorblack(cdiff);
300 }
301 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
302 if (ec)
303 goto baderror;
304 /* check if sampling BSDF */
305 if ((tsr = sqrt(tomega)) > 0) {
306 nsamp = 4.*specjitter*ndp->pr->rweight + .5;
307 nsamp += !nsamp;
308 }
309 /* jitter to fuzz BSDF cells */
310 for (i = nsamp; i--; ) {
311 bsdf_jitter(vjit, ndp, tsr);
312 /* compute BSDF */
313 ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd);
314 if (ec)
315 goto baderror;
316 if (sv.cieY - diffY <= FTINY)
317 continue; /* no specular part */
318 /* check for variable resolution */
319 ec = SDsizeBSDF(&tomega2, vjit, vsrc, SDqueryMin, ndp->sd);
320 if (ec)
321 goto baderror;
322 if (tomega2 < .12*tomega)
323 continue; /* not safe to include */
324 cvt_sdcolor(csmp, &sv);
325 saddscolor(scval, csmp);
326 ++scnt;
327 }
328 if (!scnt) /* no valid specular samples? */
329 return(0);
330
331 scalescolor(scval, 1./scnt); /* weighted average BSDF */
332 /* subtract diffuse contribution */
333 for (i = NCSAMP*(diffY > FTINY); i--; )
334 if ((scval[i] -= cdiff[i]) < 0)
335 scval[i] = 0;
336 return(1);
337 baderror:
338 objerror(ndp->mp, USER, transSDError(ec));
339 return(0); /* gratis return */
340 }
341
342 /* Compute source contribution for BSDF (reflected & transmitted) */
343 static void
344 dir_bsdf(
345 SCOLOR scval, /* returned coefficient */
346 void *nnp, /* material data */
347 FVECT ldir, /* light source direction */
348 double omega /* light source size */
349 )
350 {
351 BSDFDAT *np = (BSDFDAT *)nnp;
352 double ldot;
353 double dtmp;
354 SCOLOR sctmp;
355
356 scolorblack(scval);
357
358 ldot = DOT(np->pnorm, ldir);
359 if ((-FTINY <= ldot) & (ldot <= FTINY))
360 return;
361
362 if (ldot > 0 && sintens(np->rdiff) > FTINY) {
363 /*
364 * Compute diffuse reflected component
365 */
366 copyscolor(sctmp, np->rdiff);
367 dtmp = ldot * omega * (1./PI);
368 scalescolor(sctmp, dtmp);
369 saddscolor(scval, sctmp);
370 }
371 if (ldot < 0 && sintens(np->tdiff) > FTINY) {
372 /*
373 * Compute diffuse transmission
374 */
375 copyscolor(sctmp, np->tdiff);
376 dtmp = -ldot * omega * (1./PI);
377 scalescolor(sctmp, dtmp);
378 saddscolor(scval, sctmp);
379 }
380 if (ambRayInPmap(np->pr))
381 return; /* specular already in photon map */
382 /*
383 * Compute specular scattering coefficient using BSDF
384 */
385 if (!direct_specular_OK(sctmp, ldir, omega, np))
386 return;
387 if (ldot < 0) { /* pattern for specular transmission */
388 smultscolor(sctmp, np->pr->pcol);
389 dtmp = -ldot * omega;
390 } else
391 dtmp = ldot * omega;
392 scalescolor(sctmp, dtmp);
393 saddscolor(scval, sctmp);
394 }
395
396 /* Compute source contribution for BSDF (reflected only) */
397 static void
398 dir_brdf(
399 SCOLOR scval, /* returned coefficient */
400 void *nnp, /* material data */
401 FVECT ldir, /* light source direction */
402 double omega /* light source size */
403 )
404 {
405 BSDFDAT *np = (BSDFDAT *)nnp;
406 double ldot;
407 double dtmp;
408 SCOLOR sctmp;
409
410 scolorblack(scval);
411
412 ldot = DOT(np->pnorm, ldir);
413
414 if (ldot <= FTINY)
415 return;
416
417 if (sintens(np->rdiff) > FTINY) {
418 /*
419 * Compute diffuse reflected component
420 */
421 copyscolor(sctmp, np->rdiff);
422 dtmp = ldot * omega * (1./PI);
423 scalescolor(sctmp, dtmp);
424 saddscolor(scval, sctmp);
425 }
426 if (ambRayInPmap(np->pr))
427 return; /* specular already in photon map */
428 /*
429 * Compute specular reflection coefficient using BSDF
430 */
431 if (!direct_specular_OK(sctmp, ldir, omega, np))
432 return;
433 dtmp = ldot * omega;
434 scalescolor(sctmp, dtmp);
435 saddscolor(scval, sctmp);
436 }
437
438 /* Compute source contribution for BSDF (transmitted only) */
439 static void
440 dir_btdf(
441 SCOLOR scval, /* returned coefficient */
442 void *nnp, /* material data */
443 FVECT ldir, /* light source direction */
444 double omega /* light source size */
445 )
446 {
447 BSDFDAT *np = (BSDFDAT *)nnp;
448 double ldot;
449 double dtmp;
450 SCOLOR sctmp;
451
452 scolorblack(scval);
453
454 ldot = DOT(np->pnorm, ldir);
455
456 if (ldot >= -FTINY)
457 return;
458
459 if (sintens(np->tdiff) > FTINY) {
460 /*
461 * Compute diffuse transmission
462 */
463 copyscolor(sctmp, np->tdiff);
464 dtmp = -ldot * omega * (1./PI);
465 scalescolor(sctmp, dtmp);
466 saddscolor(scval, sctmp);
467 }
468 if (ambRayInPmap(np->pr))
469 return; /* specular already in photon map */
470 /*
471 * Compute specular scattering coefficient using BSDF
472 */
473 if (!direct_specular_OK(sctmp, ldir, omega, np))
474 return;
475 /* full pattern on transmission */
476 smultscolor(sctmp, np->pr->pcol);
477 dtmp = -ldot * omega;
478 scalescolor(sctmp, dtmp);
479 saddscolor(scval, sctmp);
480 }
481
482 /* Sample separate BSDF component */
483 static int
484 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
485 {
486 const int hasthru = (xmit &&
487 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
488 && sintens(ndp->cthru) > FTINY);
489 int nstarget = 1;
490 int nsent = 0;
491 int n;
492 SDError ec;
493 SDValue bsv;
494 double xrand;
495 FVECT vsmp, vinc;
496 RAY sr;
497 /* multiple samples? */
498 if (specjitter > 1.5) {
499 nstarget = specjitter*ndp->pr->rweight + .5;
500 nstarget += !nstarget;
501 }
502 /* run through our samples */
503 for (n = 0; n < nstarget; n++) {
504 if (nstarget == 1) { /* stratify random variable */
505 xrand = urand(ilhash(dimlist,ndims)+samplendx);
506 if (specjitter < 1.)
507 xrand = .5 + specjitter*(xrand-.5);
508 } else {
509 xrand = (n + frandom())/(double)nstarget;
510 }
511 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
512 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
513 VCOPY(vinc, vsmp); /* to compare after */
514 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
515 if (ec)
516 objerror(ndp->mp, USER, transSDError(ec));
517 if (bsv.cieY <= FTINY) /* zero component? */
518 break;
519 if (hasthru) { /* check for view ray */
520 double dx = vinc[0] + vsmp[0];
521 double dy = vinc[1] + vsmp[1];
522 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
523 continue; /* exclude view sample */
524 }
525 /* map non-view sample->world */
526 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
527 break;
528 /* spawn a specular ray */
529 if (nstarget > 1)
530 bsv.cieY /= (double)nstarget;
531 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
532 if (xmit) /* apply pattern on transmit */
533 smultscolor(sr.rcoef, ndp->pr->pcol);
534 if (rayorigin(&sr, xmit ? TSPECULAR : RSPECULAR, ndp->pr, sr.rcoef) < 0) {
535 if (!n & (nstarget > 1)) {
536 n = nstarget; /* avoid infinitue loop */
537 nstarget = nstarget*sr.rweight/(minweight + 1e-20);
538 if (n == nstarget) break;
539 n = -1; /* moved target */
540 }
541 continue; /* try again */
542 }
543 if (xmit && ndp->thick != 0) /* need to offset origin? */
544 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
545 rayvalue(&sr); /* send & evaluate sample */
546 smultscolor(sr.rcol, sr.rcoef);
547 saddscolor(ndp->pr->rcol, sr.rcol);
548 ++nsent;
549 }
550 return(nsent);
551 }
552
553 /* Sample non-diffuse components of BSDF */
554 static int
555 sample_sdf(BSDFDAT *ndp, int sflags)
556 {
557 int hasthru = (sflags == SDsampSpT &&
558 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
559 && sintens(ndp->cthru) > FTINY);
560 int n, ntotal = 0;
561 double b = 0;
562 SDSpectralDF *dfp;
563 COLORV *unsc;
564
565 if (sflags == SDsampSpT) {
566 unsc = ndp->tunsamp;
567 if (ndp->pr->rod > 0)
568 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
569 else
570 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
571 } else /* sflags == SDsampSpR */ {
572 unsc = ndp->runsamp;
573 if (ndp->pr->rod > 0)
574 dfp = ndp->sd->rf;
575 else
576 dfp = ndp->sd->rb;
577 }
578 scolorblack(unsc);
579 if (dfp == NULL) /* no specular component? */
580 return(0);
581
582 if (hasthru) { /* separate view sample? */
583 RAY tr;
584 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
585 VCOPY(tr.rdir, ndp->pr->rdir);
586 rayvalue(&tr);
587 smultscolor(tr.rcol, tr.rcoef);
588 saddscolor(ndp->pr->rcol, tr.rcol);
589 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
590 ++ntotal;
591 b = pbright(ndp->cthru);
592 } else
593 hasthru = 0;
594 }
595 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
596 b = 0;
597 } else {
598 FVECT vjit;
599 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
600 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
601 b *= (b > 0);
602 }
603 if (b <= specthresh+FTINY) { /* below sampling threshold? */
604 if (b > FTINY) { /* XXX no color from BSDF */
605 if (sflags == SDsampSpT) {
606 copyscolor(unsc, ndp->pr->pcol);
607 scalescolor(unsc, b);
608 } else /* no pattern on reflection */
609 setscolor(unsc, b, b, b);
610 }
611 return(ntotal);
612 }
613 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
614 ndims += 2;
615 for (n = dfp->ncomp; n--; ) { /* loop over components */
616 dimlist[ndims-1] = n + 9438;
617 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
618 }
619 ndims -= 2;
620 return(ntotal);
621 }
622
623 /* Color a ray that hit a BSDF material */
624 int
625 m_bsdf(OBJREC *m, RAY *r)
626 {
627 int hasthick = (m->otype == MAT_BSDF);
628 int hitfront;
629 SCOLOR sctmp;
630 SDError ec;
631 FVECT upvec, vtmp;
632 MFUNC *mf;
633 BSDFDAT nd;
634 /* check arguments */
635 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
636 (m->oargs.nfargs % 3))
637 objerror(m, USER, "bad # arguments");
638 /* record surface struck */
639 hitfront = (r->rod > 0);
640 /* load cal file */
641 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
642 : getfunc(m, 4, 0xe, 1) ;
643 setfunc(m, r);
644 nd.thick = 0; /* set thickness */
645 if (hasthick) {
646 nd.thick = evalue(mf->ep[0]);
647 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
648 nd.thick = 0;
649 }
650 /* check backface visibility */
651 if (!hitfront & !backvis) {
652 raytrans(r);
653 return(1);
654 }
655 /* check other rays to pass */
656 if (nd.thick != 0 && (r->crtype & SHADOW ||
657 !(r->crtype & (SPECULAR|AMBIENT)) ||
658 (nd.thick > 0) ^ hitfront)) {
659 raytrans(r); /* hide our proxy */
660 return(1);
661 }
662 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
663 return(1);
664 nd.mp = m;
665 nd.pr = r;
666 /* get BSDF data */
667 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
668 /* early shadow check #2 */
669 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
670 SDfreeCache(nd.sd);
671 return(1);
672 }
673 /* diffuse components */
674 if (hitfront) {
675 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
676 if (m->oargs.nfargs >= 3) {
677 setscolor(sctmp, m->oargs.farg[0],
678 m->oargs.farg[1],
679 m->oargs.farg[2]);
680 saddscolor(nd.rdiff, sctmp);
681 }
682 cvt_sdcolor(nd.tdiff, &nd.sd->tLambFront);
683 } else {
684 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
685 if (m->oargs.nfargs >= 6) {
686 setscolor(sctmp, m->oargs.farg[3],
687 m->oargs.farg[4],
688 m->oargs.farg[5]);
689 saddscolor(nd.rdiff, sctmp);
690 }
691 cvt_sdcolor(nd.tdiff, &nd.sd->tLambBack);
692 }
693 if (m->oargs.nfargs >= 9) { /* add diffuse transmittance? */
694 setscolor(sctmp, m->oargs.farg[6],
695 m->oargs.farg[7],
696 m->oargs.farg[8]);
697 saddscolor(nd.tdiff, sctmp);
698 }
699 /* get modifiers */
700 raytexture(r, m->omod);
701 /* modify diffuse values */
702 smultscolor(nd.rdiff, r->pcol);
703 smultscolor(nd.tdiff, r->pcol);
704 /* get up vector */
705 upvec[0] = evalue(mf->ep[hasthick+0]);
706 upvec[1] = evalue(mf->ep[hasthick+1]);
707 upvec[2] = evalue(mf->ep[hasthick+2]);
708 /* return to world coords */
709 if (mf->fxp != &unitxf) {
710 multv3(upvec, upvec, mf->fxp->xfm);
711 nd.thick *= mf->fxp->sca;
712 }
713 if (r->rox != NULL) {
714 multv3(upvec, upvec, r->rox->f.xfm);
715 nd.thick *= r->rox->f.sca;
716 }
717 raynormal(nd.pnorm, r);
718 /* compute local BSDF xform */
719 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
720 if (!ec) {
721 nd.vray[0] = -r->rdir[0];
722 nd.vray[1] = -r->rdir[1];
723 nd.vray[2] = -r->rdir[2];
724 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
725 }
726 if (ec) {
727 objerror(m, WARNING, "Illegal orientation vector");
728 SDfreeCache(nd.sd);
729 return(1);
730 }
731 scolorblack(nd.cthru); /* consider through component */
732 scolorblack(nd.cthru_surr);
733 if (m->otype == MAT_ABSDF) {
734 compute_through(&nd);
735 if (r->crtype & SHADOW) {
736 RAY tr; /* attempt to pass shadow ray */
737 SDfreeCache(nd.sd);
738 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
739 return(1); /* no through component */
740 VCOPY(tr.rdir, r->rdir);
741 rayvalue(&tr); /* transmit with scaling */
742 smultscolor(tr.rcol, tr.rcoef);
743 copyscolor(r->rcol, tr.rcol);
744 return(1); /* we're done */
745 }
746 }
747 ec = SDinvXform(nd.fromloc, nd.toloc);
748 if (!ec) /* determine BSDF resolution */
749 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
750 SDqueryMin+SDqueryMax, nd.sd);
751 if (ec)
752 objerror(m, USER, transSDError(ec));
753
754 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
755 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
756 if (!hitfront) { /* perturb normal towards hit */
757 nd.pnorm[0] = -nd.pnorm[0];
758 nd.pnorm[1] = -nd.pnorm[1];
759 nd.pnorm[2] = -nd.pnorm[2];
760 }
761 /* sample reflection */
762 sample_sdf(&nd, SDsampSpR);
763 /* sample transmission */
764 sample_sdf(&nd, SDsampSpT);
765 /* compute indirect diffuse */
766 copyscolor(sctmp, nd.rdiff);
767 saddscolor(sctmp, nd.runsamp);
768 if (sintens(sctmp) > FTINY) { /* ambient from reflection */
769 multambient(sctmp, r, nd.pnorm);
770 saddscolor(r->rcol, sctmp);
771 }
772 copyscolor(sctmp, nd.tdiff);
773 saddscolor(sctmp, nd.tunsamp);
774 if (sintens(sctmp) > FTINY) { /* ambient from other side */
775 FVECT bnorm;
776 bnorm[0] = -nd.pnorm[0];
777 bnorm[1] = -nd.pnorm[1];
778 bnorm[2] = -nd.pnorm[2];
779 if (nd.thick != 0) { /* proxy with offset? */
780 VCOPY(vtmp, r->rop);
781 VSUM(r->rop, vtmp, r->ron, nd.thick);
782 multambient(sctmp, r, bnorm);
783 VCOPY(r->rop, vtmp);
784 } else
785 multambient(sctmp, r, bnorm);
786 saddscolor(r->rcol, sctmp);
787 }
788 /* add direct component */
789 if ((nd.sd->tf == NULL) & (nd.sd->tb == NULL) &&
790 sintens(nd.tdiff) <= FTINY) {
791 direct(r, dir_brdf, &nd); /* reflection only */
792 } else if (nd.thick == 0) {
793 direct(r, dir_bsdf, &nd); /* thin surface scattering */
794 } else {
795 direct(r, dir_brdf, &nd); /* reflection first */
796 VCOPY(vtmp, r->rop); /* offset for transmitted */
797 VSUM(r->rop, vtmp, r->ron, -nd.thick);
798 direct(r, dir_btdf, &nd); /* separate transmission */
799 VCOPY(r->rop, vtmp);
800 }
801 /* clean up */
802 SDfreeCache(nd.sd);
803 return(1);
804 }