ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.7
Committed: Tue Feb 22 05:41:02 2011 UTC (13 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.6: +39 -43 lines
Log Message:
Fixed problem with double-counting through component in indirect

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.6 2011/02/20 17:43:43 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "ambient.h"
12 #include "source.h"
13 #include "func.h"
14 #include "bsdf.h"
15 #include "random.h"
16
17 /*
18 * Arguments to this material include optional diffuse colors.
19 * String arguments include the BSDF and function files.
20 * A non-zero thickness causes the strange but useful behavior
21 * of translating transmitted rays this distance beneath the surface
22 * (opposite the surface normal) to bypass any intervening geometry.
23 * Translation only affects scattered, non-source-directed samples.
24 * A non-zero thickness has the further side-effect that an unscattered
25 * (view) ray will pass right through our material if it has any
26 * non-diffuse transmission, making the BSDF surface invisible. This
27 * shows the proxied geometry instead. Thickness has the further
28 * effect of turning off reflection on the hidden side so that rays
29 * heading in the opposite direction pass unimpeded through the BSDF
30 * surface. A paired surface may be placed on the opposide side of
31 * the detail geometry, less than this thickness away, if a two-way
32 * proxy is desired. Note that the sign of the thickness is important.
33 * A positive thickness hides geometry behind the BSDF surface and uses
34 * front reflectance and transmission properties. A negative thickness
35 * hides geometry in front of the surface when rays hit from behind,
36 * and applies only the transmission and backside reflectance properties.
37 * Reflection is ignored on the hidden side, as those rays pass through.
38 * The "up" vector for the BSDF is given by three variables, defined
39 * (along with the thickness) by the named function file, or '.' if none.
40 * Together with the surface normal, this defines the local coordinate
41 * system for the BSDF.
42 * We do not reorient the surface, so if the BSDF has no back-side
43 * reflectance and none is given in the real arguments, a BSDF surface
44 * with zero thickness will appear black when viewed from behind
45 * unless backface visibility is off.
46 * The diffuse arguments are added to components in the BSDF file,
47 * not multiplied. However, patterns affect this material as a multiplier
48 * on everything except non-diffuse reflection.
49 *
50 * Arguments for MAT_BSDF are:
51 * 6+ thick BSDFfile ux uy uz funcfile transform
52 * 0
53 * 0|3|9 rdf gdf bdf
54 * rdb gdb bdb
55 * rdt gdt bdt
56 */
57
58 /*
59 * Note that our reverse ray-tracing process means that the positions
60 * of incoming and outgoing vectors may be reversed in our calls
61 * to the BSDF library. This is fine, since the bidirectional nature
62 * of the BSDF (that's what the 'B' stands for) means it all works out.
63 */
64
65 typedef struct {
66 OBJREC *mp; /* material pointer */
67 RAY *pr; /* intersected ray */
68 FVECT pnorm; /* perturbed surface normal */
69 FVECT vray; /* local outgoing (return) vector */
70 double sr_vpsa; /* sqrt of BSDF projected solid angle */
71 RREAL toloc[3][3]; /* world to local BSDF coords */
72 RREAL fromloc[3][3]; /* local BSDF coords to world */
73 double thick; /* surface thickness */
74 SDData *sd; /* loaded BSDF data */
75 COLOR runsamp; /* BSDF hemispherical reflection */
76 COLOR rdiff; /* added diffuse reflection */
77 COLOR tunsamp; /* BSDF hemispherical transmission */
78 COLOR tdiff; /* added diffuse transmission */
79 } BSDFDAT; /* BSDF material data */
80
81 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
82
83 /* Jitter ray sample according to projected solid angle and specjitter */
84 static void
85 bsdf_jitter(FVECT vres, BSDFDAT *ndp)
86 {
87 double sr_psa = ndp->sr_vpsa;
88
89 VCOPY(vres, ndp->vray);
90 if (specjitter < 1.)
91 sr_psa *= specjitter;
92 if (sr_psa <= FTINY)
93 return;
94 vres[0] += sr_psa*(.5 - frandom());
95 vres[1] += sr_psa*(.5 - frandom());
96 normalize(vres);
97 }
98
99 /* Evaluate BSDF for direct component, returning true if OK to proceed */
100 static int
101 direct_bsdf_OK(COLOR cval, FVECT ldir, BSDFDAT *ndp)
102 {
103 FVECT vsrc, vjit;
104 SDValue sv;
105 SDError ec;
106 /* transform source direction */
107 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
108 return(0);
109 /* jitter query direction */
110 bsdf_jitter(vjit, ndp);
111 /* avoid indirect over-counting */
112 if (ndp->thick != .0 && ndp->pr->crtype & (SPECULAR|AMBIENT) &&
113 vsrc[2] > .0 ^ vjit[2] > .0) {
114 double dx = vsrc[0] + vjit[0];
115 double dy = vsrc[1] + vjit[1];
116 if (dx*dx + dy*dy <= ndp->sr_vpsa*ndp->sr_vpsa)
117 return(0);
118 }
119 ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd);
120 if (ec)
121 objerror(ndp->mp, USER, transSDError(ec));
122
123 if (sv.cieY <= FTINY) /* not worth using? */
124 return(0);
125 /* else we're good to go */
126 cvt_sdcolor(cval, &sv);
127 return(1);
128 }
129
130 /* Compute source contribution for BSDF (reflected & transmitted) */
131 static void
132 dir_bsdf(
133 COLOR cval, /* returned coefficient */
134 void *nnp, /* material data */
135 FVECT ldir, /* light source direction */
136 double omega /* light source size */
137 )
138 {
139 BSDFDAT *np = (BSDFDAT *)nnp;
140 double ldot;
141 double dtmp;
142 COLOR ctmp;
143
144 setcolor(cval, .0, .0, .0);
145
146 ldot = DOT(np->pnorm, ldir);
147 if ((-FTINY <= ldot) & (ldot <= FTINY))
148 return;
149
150 if (ldot > .0 && bright(np->rdiff) > FTINY) {
151 /*
152 * Compute added diffuse reflected component.
153 */
154 copycolor(ctmp, np->rdiff);
155 dtmp = ldot * omega * (1./PI);
156 scalecolor(ctmp, dtmp);
157 addcolor(cval, ctmp);
158 }
159 if (ldot < .0 && bright(np->tdiff) > FTINY) {
160 /*
161 * Compute added diffuse transmission.
162 */
163 copycolor(ctmp, np->tdiff);
164 dtmp = -ldot * omega * (1.0/PI);
165 scalecolor(ctmp, dtmp);
166 addcolor(cval, ctmp);
167 }
168 /*
169 * Compute scattering coefficient using BSDF.
170 */
171 if (!direct_bsdf_OK(ctmp, ldir, np))
172 return;
173 if (ldot > .0) { /* pattern only diffuse reflection */
174 COLOR ctmp1, ctmp2;
175 dtmp = (np->pr->rod > .0) ? np->sd->rLambFront.cieY
176 : np->sd->rLambBack.cieY;
177 /* diffuse fraction */
178 dtmp /= PI * bright(ctmp);
179 copycolor(ctmp2, np->pr->pcol);
180 scalecolor(ctmp2, dtmp);
181 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
182 addcolor(ctmp1, ctmp2);
183 multcolor(ctmp, ctmp1); /* apply derated pattern */
184 dtmp = ldot * omega;
185 } else { /* full pattern on transmission */
186 multcolor(ctmp, np->pr->pcol);
187 dtmp = -ldot * omega;
188 }
189 scalecolor(ctmp, dtmp);
190 addcolor(cval, ctmp);
191 }
192
193 /* Compute source contribution for BSDF (reflected only) */
194 static void
195 dir_brdf(
196 COLOR cval, /* returned coefficient */
197 void *nnp, /* material data */
198 FVECT ldir, /* light source direction */
199 double omega /* light source size */
200 )
201 {
202 BSDFDAT *np = (BSDFDAT *)nnp;
203 double ldot;
204 double dtmp;
205 COLOR ctmp, ctmp1, ctmp2;
206
207 setcolor(cval, .0, .0, .0);
208
209 ldot = DOT(np->pnorm, ldir);
210
211 if (ldot <= FTINY)
212 return;
213
214 if (bright(np->rdiff) > FTINY) {
215 /*
216 * Compute added diffuse reflected component.
217 */
218 copycolor(ctmp, np->rdiff);
219 dtmp = ldot * omega * (1./PI);
220 scalecolor(ctmp, dtmp);
221 addcolor(cval, ctmp);
222 }
223 /*
224 * Compute reflection coefficient using BSDF.
225 */
226 if (!direct_bsdf_OK(ctmp, ldir, np))
227 return;
228 /* pattern only diffuse reflection */
229 dtmp = (np->pr->rod > .0) ? np->sd->rLambFront.cieY
230 : np->sd->rLambBack.cieY;
231 dtmp /= PI * bright(ctmp); /* diffuse fraction */
232 copycolor(ctmp2, np->pr->pcol);
233 scalecolor(ctmp2, dtmp);
234 setcolor(ctmp1, 1.-dtmp, 1.-dtmp, 1.-dtmp);
235 addcolor(ctmp1, ctmp2);
236 multcolor(ctmp, ctmp1); /* apply derated pattern */
237 dtmp = ldot * omega;
238 scalecolor(ctmp, dtmp);
239 addcolor(cval, ctmp);
240 }
241
242 /* Compute source contribution for BSDF (transmitted only) */
243 static void
244 dir_btdf(
245 COLOR cval, /* returned coefficient */
246 void *nnp, /* material data */
247 FVECT ldir, /* light source direction */
248 double omega /* light source size */
249 )
250 {
251 BSDFDAT *np = (BSDFDAT *)nnp;
252 double ldot;
253 double dtmp;
254 COLOR ctmp;
255
256 setcolor(cval, .0, .0, .0);
257
258 ldot = DOT(np->pnorm, ldir);
259
260 if (ldot >= -FTINY)
261 return;
262
263 if (bright(np->tdiff) > FTINY) {
264 /*
265 * Compute added diffuse transmission.
266 */
267 copycolor(ctmp, np->tdiff);
268 dtmp = -ldot * omega * (1.0/PI);
269 scalecolor(ctmp, dtmp);
270 addcolor(cval, ctmp);
271 }
272 /*
273 * Compute scattering coefficient using BSDF.
274 */
275 if (!direct_bsdf_OK(ctmp, ldir, np))
276 return;
277 /* full pattern on transmission */
278 multcolor(ctmp, np->pr->pcol);
279 dtmp = -ldot * omega;
280 scalecolor(ctmp, dtmp);
281 addcolor(cval, ctmp);
282 }
283
284 /* Sample separate BSDF component */
285 static int
286 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int usepat)
287 {
288 int nstarget = 1;
289 int nsent = 0;
290 SDError ec;
291 SDValue bsv;
292 double sthick;
293 FVECT vjit, vsmp;
294 RAY sr;
295 int ntrials;
296 /* multiple samples? */
297 if (specjitter > 1.5) {
298 nstarget = specjitter*ndp->pr->rweight + .5;
299 if (nstarget < 1)
300 nstarget = 1;
301 }
302 /* run through our trials */
303 for (ntrials = 0; nsent < nstarget && ntrials < 9*nstarget; ntrials++) {
304 SDerrorDetail[0] = '\0';
305 /* sample direction & coef. */
306 bsdf_jitter(vjit, ndp);
307 ec = SDsampComponent(&bsv, vsmp, vjit, ntrials ? frandom()
308 : urand(ilhash(dimlist,ndims)+samplendx), dcp);
309 if (ec)
310 objerror(ndp->mp, USER, transSDError(ec));
311 /* zero component? */
312 if (bsv.cieY <= FTINY)
313 break;
314 /* map vector to world */
315 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
316 break;
317 /* unintentional penetration? */
318 if (DOT(sr.rdir, ndp->pr->ron) > .0 ^ vsmp[2] > .0)
319 continue;
320 /* spawn a specular ray */
321 if (nstarget > 1)
322 bsv.cieY /= (double)nstarget;
323 cvt_sdcolor(sr.rcoef, &bsv); /* use color */
324 if (usepat) /* pattern on transmission */
325 multcolor(sr.rcoef, ndp->pr->pcol);
326 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
327 if (maxdepth > 0)
328 break;
329 ++nsent; /* Russian roulette victim */
330 continue;
331 }
332 /* need to offset origin? */
333 if (ndp->thick != .0 && ndp->pr->rod > .0 ^ vsmp[2] > .0)
334 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
335 rayvalue(&sr); /* send & evaluate sample */
336 multcolor(sr.rcol, sr.rcoef);
337 addcolor(ndp->pr->rcol, sr.rcol);
338 ++nsent;
339 }
340 return(nsent);
341 }
342
343 /* Sample non-diffuse components of BSDF */
344 static int
345 sample_sdf(BSDFDAT *ndp, int sflags)
346 {
347 int n, ntotal = 0;
348 SDSpectralDF *dfp;
349 COLORV *unsc;
350
351 if (sflags == SDsampSpT) {
352 unsc = ndp->tunsamp;
353 dfp = ndp->sd->tf;
354 cvt_sdcolor(unsc, &ndp->sd->tLamb);
355 } else /* sflags == SDsampSpR */ {
356 unsc = ndp->runsamp;
357 if (ndp->pr->rod > .0) {
358 dfp = ndp->sd->rf;
359 cvt_sdcolor(unsc, &ndp->sd->rLambFront);
360 } else {
361 dfp = ndp->sd->rb;
362 cvt_sdcolor(unsc, &ndp->sd->rLambBack);
363 }
364 }
365 multcolor(unsc, ndp->pr->pcol);
366 if (dfp == NULL) /* no specular component? */
367 return(0);
368 /* below sampling threshold? */
369 if (dfp->maxHemi <= specthresh+FTINY) {
370 if (dfp->maxHemi > FTINY) { /* XXX no color from BSDF */
371 FVECT vjit;
372 double d;
373 COLOR ctmp;
374 bsdf_jitter(vjit, ndp);
375 d = SDdirectHemi(vjit, sflags, ndp->sd);
376 if (sflags == SDsampSpT) {
377 copycolor(ctmp, ndp->pr->pcol);
378 scalecolor(ctmp, d);
379 } else /* no pattern on reflection */
380 setcolor(ctmp, d, d, d);
381 addcolor(unsc, ctmp);
382 }
383 return(0);
384 }
385 /* else need to sample */
386 dimlist[ndims++] = (int)(size_t)ndp->mp;
387 ndims++;
388 for (n = dfp->ncomp; n--; ) { /* loop over components */
389 dimlist[ndims-1] = n + 9438;
390 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
391 }
392 ndims -= 2;
393 return(ntotal);
394 }
395
396 /* Color a ray that hit a BSDF material */
397 int
398 m_bsdf(OBJREC *m, RAY *r)
399 {
400 int hitfront;
401 COLOR ctmp;
402 SDError ec;
403 FVECT upvec, vtmp;
404 MFUNC *mf;
405 BSDFDAT nd;
406 /* check arguments */
407 if ((m->oargs.nsargs < 6) | (m->oargs.nfargs > 9) |
408 (m->oargs.nfargs % 3))
409 objerror(m, USER, "bad # arguments");
410 /* record surface struck */
411 hitfront = (r->rod > .0);
412 /* load cal file */
413 mf = getfunc(m, 5, 0x1d, 1);
414 /* get thickness */
415 nd.thick = evalue(mf->ep[0]);
416 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
417 nd.thick = .0;
418 /* check shadow */
419 if (r->crtype & SHADOW) {
420 if (nd.thick != .0)
421 raytrans(r); /* pass-through */
422 return(1); /* or shadow */
423 }
424 /* check other rays to pass */
425 if (nd.thick != .0 && (!(r->crtype & (SPECULAR|AMBIENT)) ||
426 nd.thick > .0 ^ hitfront)) {
427 raytrans(r); /* hide our proxy */
428 return(1);
429 }
430 /* get BSDF data */
431 nd.sd = loadBSDF(m->oargs.sarg[1]);
432 /* diffuse reflectance */
433 if (hitfront) {
434 if (m->oargs.nfargs < 3)
435 setcolor(nd.rdiff, .0, .0, .0);
436 else
437 setcolor(nd.rdiff, m->oargs.farg[0],
438 m->oargs.farg[1],
439 m->oargs.farg[2]);
440 } else {
441 if (m->oargs.nfargs < 6) { /* check invisible backside */
442 if (!backvis && (nd.sd->rb == NULL) &
443 (nd.sd->tf == NULL)) {
444 SDfreeCache(nd.sd);
445 raytrans(r);
446 return(1);
447 }
448 setcolor(nd.rdiff, .0, .0, .0);
449 } else
450 setcolor(nd.rdiff, m->oargs.farg[3],
451 m->oargs.farg[4],
452 m->oargs.farg[5]);
453 }
454 /* diffuse transmittance */
455 if (m->oargs.nfargs < 9)
456 setcolor(nd.tdiff, .0, .0, .0);
457 else
458 setcolor(nd.tdiff, m->oargs.farg[6],
459 m->oargs.farg[7],
460 m->oargs.farg[8]);
461 nd.mp = m;
462 nd.pr = r;
463 /* get modifiers */
464 raytexture(r, m->omod);
465 /* modify diffuse values */
466 multcolor(nd.rdiff, r->pcol);
467 multcolor(nd.tdiff, r->pcol);
468 /* get up vector */
469 upvec[0] = evalue(mf->ep[1]);
470 upvec[1] = evalue(mf->ep[2]);
471 upvec[2] = evalue(mf->ep[3]);
472 /* return to world coords */
473 if (mf->f != &unitxf) {
474 multv3(upvec, upvec, mf->f->xfm);
475 nd.thick *= mf->f->sca;
476 }
477 raynormal(nd.pnorm, r);
478 /* compute local BSDF xform */
479 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
480 if (!ec) {
481 nd.vray[0] = -r->rdir[0];
482 nd.vray[1] = -r->rdir[1];
483 nd.vray[2] = -r->rdir[2];
484 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
485 }
486 if (!ec)
487 ec = SDinvXform(nd.fromloc, nd.toloc);
488 /* determine BSDF resolution */
489 if (!ec)
490 ec = SDsizeBSDF(&nd.sr_vpsa, nd.vray, SDqueryMin, nd.sd);
491 if (!ec)
492 nd.sr_vpsa = sqrt(nd.sr_vpsa);
493 else {
494 objerror(m, WARNING, transSDError(ec));
495 SDfreeCache(nd.sd);
496 return(1);
497 }
498 if (!hitfront) { /* perturb normal towards hit */
499 nd.pnorm[0] = -nd.pnorm[0];
500 nd.pnorm[1] = -nd.pnorm[1];
501 nd.pnorm[2] = -nd.pnorm[2];
502 }
503 /* sample reflection */
504 sample_sdf(&nd, SDsampSpR);
505 /* sample transmission */
506 sample_sdf(&nd, SDsampSpT);
507 /* compute indirect diffuse */
508 copycolor(ctmp, nd.rdiff);
509 addcolor(ctmp, nd.runsamp);
510 if (bright(ctmp) > FTINY) { /* ambient from reflection */
511 if (!hitfront)
512 flipsurface(r);
513 multambient(ctmp, r, nd.pnorm);
514 addcolor(r->rcol, ctmp);
515 if (!hitfront)
516 flipsurface(r);
517 }
518 copycolor(ctmp, nd.tdiff);
519 addcolor(ctmp, nd.tunsamp);
520 if (bright(ctmp) > FTINY) { /* ambient from other side */
521 FVECT bnorm;
522 if (hitfront)
523 flipsurface(r);
524 bnorm[0] = -nd.pnorm[0];
525 bnorm[1] = -nd.pnorm[1];
526 bnorm[2] = -nd.pnorm[2];
527 if (nd.thick != .0) { /* proxy with offset? */
528 VCOPY(vtmp, r->rop);
529 VSUM(r->rop, vtmp, r->ron, -nd.thick);
530 multambient(ctmp, r, bnorm);
531 VCOPY(r->rop, vtmp);
532 } else
533 multambient(ctmp, r, bnorm);
534 addcolor(r->rcol, ctmp);
535 if (hitfront)
536 flipsurface(r);
537 }
538 /* add direct component */
539 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL)) {
540 direct(r, dir_brdf, &nd); /* reflection only */
541 } else if (nd.thick == .0) {
542 direct(r, dir_bsdf, &nd); /* thin surface scattering */
543 } else {
544 direct(r, dir_brdf, &nd); /* reflection first */
545 VCOPY(vtmp, r->rop); /* offset for transmitted */
546 VSUM(r->rop, vtmp, r->ron, -nd.thick);
547 direct(r, dir_btdf, &nd); /* separate transmission */
548 VCOPY(r->rop, vtmp);
549 }
550 /* clean up */
551 SDfreeCache(nd.sd);
552 return(1);
553 }