ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.66
Committed: Wed Oct 13 20:03:31 2021 UTC (2 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.65: +20 -39 lines
Log Message:
perf: Simplified BSDF sampling, leaving source sampling to -dj option

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.65 2021/08/27 03:09:27 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 COLOR cthru_surr; /* surround for "through" component */
91 SDData *sd; /* loaded BSDF data */
92 COLOR rdiff; /* diffuse reflection */
93 COLOR runsamp; /* BSDF hemispherical reflection */
94 COLOR tdiff; /* diffuse transmission */
95 COLOR tunsamp; /* BSDF hemispherical transmission */
96 } BSDFDAT; /* BSDF material data */
97
98 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
99
100 typedef struct {
101 double vy; /* brightness (for sorting) */
102 FVECT tdir; /* through sample direction (normalized) */
103 COLOR vcol; /* BTDF color */
104 } PEAKSAMP; /* BTDF peak sample */
105
106 /* Comparison function to put near-peak values in descending order */
107 static int
108 cmp_psamp(const void *p1, const void *p2)
109 {
110 double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
111 if (diff > 0) return(-1);
112 if (diff < 0) return(1);
113 return(0);
114 }
115
116 /* Compute "through" component color for MAT_ABSDF */
117 static void
118 compute_through(BSDFDAT *ndp)
119 {
120 #define NDIR2CHECK 29
121 static const float dir2check[NDIR2CHECK][2] = {
122 {0, 0}, {-0.6, 0}, {0, 0.6},
123 {0, -0.6}, {0.6, 0}, {-0.6, 0.6},
124 {-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
125 {-1.2, 0}, {0, 1.2}, {0, -1.2},
126 {1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
127 {1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
128 {0, 1.8}, {0, -1.8}, {1.8, 0},
129 {-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
130 {1.8, -1.8}, {-2.4, 0}, {0, 2.4},
131 {0, -2.4}, {2.4, 0},
132 };
133 PEAKSAMP psamp[NDIR2CHECK];
134 SDSpectralDF *dfp;
135 FVECT pdir;
136 double tomega, srchrad;
137 double tomsum, tomsurr;
138 COLOR vpeak, vsurr;
139 double vypeak;
140 int i, ns;
141 SDError ec;
142
143 if (ndp->pr->rod > 0)
144 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
145 else
146 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
147
148 if (dfp == NULL)
149 return; /* no specular transmission */
150 if (bright(ndp->pr->pcol) <= FTINY)
151 return; /* pattern is black, here */
152 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
153 for (i = 0; i < NDIR2CHECK; i++) {
154 SDValue sv;
155 psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
156 psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
157 psamp[i].tdir[2] = -ndp->vray[2];
158 normalize(psamp[i].tdir);
159 ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
160 if (ec)
161 goto baderror;
162 cvt_sdcolor(psamp[i].vcol, &sv);
163 psamp[i].vy = sv.cieY;
164 }
165 qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
166 if (psamp[0].vy <= FTINY)
167 return; /* zero BTDF here */
168 setcolor(vpeak, 0, 0, 0);
169 setcolor(vsurr, 0, 0, 0);
170 vypeak = tomsum = tomsurr = 0; /* combine top unique values */
171 ns = 0;
172 for (i = 0; i < NDIR2CHECK; i++) {
173 if (i && psamp[i].vy == psamp[i-1].vy)
174 continue; /* assume duplicate sample */
175
176 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
177 SDqueryMin, ndp->sd);
178 if (ec)
179 goto baderror;
180
181 scalecolor(psamp[i].vcol, tomega);
182 /* not part of peak? */
183 if (tomega > 1.5*dfp->minProjSA ||
184 vypeak > 8.*psamp[i].vy*ns) {
185 if (!i) return; /* abort */
186 addcolor(vsurr, psamp[i].vcol);
187 tomsurr += tomega;
188 continue;
189 }
190 addcolor(vpeak, psamp[i].vcol);
191 tomsum += tomega;
192 vypeak += psamp[i].vy;
193 ++ns;
194 }
195 if (tomsurr <= FTINY) /* no surround implies no peak */
196 return;
197 if ((vypeak/ns - (ndp->vray[2] > 0 ? ndp->sd->tLambFront.cieY
198 : ndp->sd->tLambBack.cieY)*(1./PI))*tomsum < .0005)
199 return; /* < 0.05% transmission */
200 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
201 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
202 scalecolor(vsurr, 1./tomsurr); /* surround is avg. BTDF */
203 copycolor(ndp->cthru_surr, vsurr);
204 multcolor(ndp->cthru_surr, ndp->pr->pcol);
205 return;
206 baderror:
207 objerror(ndp->mp, USER, transSDError(ec));
208 #undef NDIR2CHECK
209 }
210
211 /* Jitter ray sample according to projected solid angle and specjitter */
212 static void
213 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
214 {
215 VCOPY(vres, ndp->vray);
216 if (specjitter < 1.)
217 sr_psa *= specjitter;
218 if (sr_psa <= FTINY)
219 return;
220 vres[0] += sr_psa*(.5 - frandom());
221 vres[1] += sr_psa*(.5 - frandom());
222 normalize(vres);
223 }
224
225 /* Get BSDF specular for direct component, returning true if OK to proceed */
226 static int
227 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
228 {
229 int nsamp = 1;
230 int scnt = 0;
231 FVECT vsrc, vjit;
232 double tomega, tomega2;
233 double sf, tsr, sd[2];
234 COLOR csmp, cdiff;
235 double diffY;
236 SDValue sv;
237 SDError ec;
238 int i;
239 /* in case we fail */
240 setcolor(cval, 0, 0, 0);
241 /* transform source direction */
242 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
243 return(0);
244 /* will discount diffuse portion */
245 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
246 case 3:
247 if (ndp->sd->rf == NULL)
248 return(0); /* all diffuse */
249 sv = ndp->sd->rLambFront;
250 break;
251 case 0:
252 if (ndp->sd->rb == NULL)
253 return(0); /* all diffuse */
254 sv = ndp->sd->rLambBack;
255 break;
256 case 1:
257 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
258 return(0); /* all diffuse */
259 sv = ndp->sd->tLambFront;
260 break;
261 case 2:
262 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
263 return(0); /* all diffuse */
264 sv = ndp->sd->tLambBack;
265 break;
266 }
267 if (sv.cieY > FTINY) {
268 diffY = sv.cieY *= 1./PI;
269 cvt_sdcolor(cdiff, &sv);
270 } else {
271 diffY = 0;
272 setcolor(cdiff, 0, 0, 0);
273 }
274 /* check indirect over-counting */
275 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
276 double dx = vsrc[0] + ndp->vray[0];
277 double dy = vsrc[1] + ndp->vray[1];
278 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
279 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
280 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
281
282 tomega = omega*fabs(vsrc[2]);
283 if (dx*dx + dy*dy <= (2.5*4./PI)*(tomega + dfp->minProjSA +
284 2.*sqrt(tomega*dfp->minProjSA))) {
285 if (bright(ndp->cthru_surr) <= FTINY)
286 return(0);
287 copycolor(cval, ndp->cthru_surr);
288 return(1); /* return non-zero surround BTDF */
289 }
290 }
291 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
292 if (ec)
293 goto baderror;
294 /* check if sampling BSDF */
295 if ((tsr = sqrt(tomega)) > 0) {
296 nsamp = 4.*specjitter*ndp->pr->rweight + .5;
297 nsamp += !nsamp;
298 }
299 /* jitter to fuzz BSDF cells */
300 for (i = nsamp; i--; ) {
301 bsdf_jitter(vjit, ndp, tsr);
302 /* compute BSDF */
303 ec = SDevalBSDF(&sv, vjit, vsrc, ndp->sd);
304 if (ec)
305 goto baderror;
306 if (sv.cieY - diffY <= FTINY)
307 continue; /* no specular part */
308 /* check for variable resolution */
309 ec = SDsizeBSDF(&tomega2, vjit, vsrc, SDqueryMin, ndp->sd);
310 if (ec)
311 goto baderror;
312 if (tomega2 < .12*tomega)
313 continue; /* not safe to include */
314 cvt_sdcolor(csmp, &sv);
315 addcolor(cval, csmp);
316 ++scnt;
317 }
318 if (!scnt) /* no valid specular samples? */
319 return(0);
320
321 sf = 1./scnt; /* weighted average BSDF */
322 scalecolor(cval, sf);
323 /* subtract diffuse contribution */
324 for (i = 3*(diffY > FTINY); i--; )
325 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
326 colval(cval,i) = 0;
327 return(1);
328 baderror:
329 objerror(ndp->mp, USER, transSDError(ec));
330 return(0); /* gratis return */
331 }
332
333 /* Compute source contribution for BSDF (reflected & transmitted) */
334 static void
335 dir_bsdf(
336 COLOR cval, /* returned coefficient */
337 void *nnp, /* material data */
338 FVECT ldir, /* light source direction */
339 double omega /* light source size */
340 )
341 {
342 BSDFDAT *np = (BSDFDAT *)nnp;
343 double ldot;
344 double dtmp;
345 COLOR ctmp;
346
347 setcolor(cval, 0, 0, 0);
348
349 ldot = DOT(np->pnorm, ldir);
350 if ((-FTINY <= ldot) & (ldot <= FTINY))
351 return;
352
353 if (ldot > 0 && bright(np->rdiff) > FTINY) {
354 /*
355 * Compute diffuse reflected component
356 */
357 copycolor(ctmp, np->rdiff);
358 dtmp = ldot * omega * (1./PI);
359 scalecolor(ctmp, dtmp);
360 addcolor(cval, ctmp);
361 }
362 if (ldot < 0 && bright(np->tdiff) > FTINY) {
363 /*
364 * Compute diffuse transmission
365 */
366 copycolor(ctmp, np->tdiff);
367 dtmp = -ldot * omega * (1./PI);
368 scalecolor(ctmp, dtmp);
369 addcolor(cval, ctmp);
370 }
371 if (ambRayInPmap(np->pr))
372 return; /* specular already in photon map */
373 /*
374 * Compute specular scattering coefficient using BSDF
375 */
376 if (!direct_specular_OK(ctmp, ldir, omega, np))
377 return;
378 if (ldot < 0) { /* pattern for specular transmission */
379 multcolor(ctmp, np->pr->pcol);
380 dtmp = -ldot * omega;
381 } else
382 dtmp = ldot * omega;
383 scalecolor(ctmp, dtmp);
384 addcolor(cval, ctmp);
385 }
386
387 /* Compute source contribution for BSDF (reflected only) */
388 static void
389 dir_brdf(
390 COLOR cval, /* returned coefficient */
391 void *nnp, /* material data */
392 FVECT ldir, /* light source direction */
393 double omega /* light source size */
394 )
395 {
396 BSDFDAT *np = (BSDFDAT *)nnp;
397 double ldot;
398 double dtmp;
399 COLOR ctmp, ctmp1, ctmp2;
400
401 setcolor(cval, 0, 0, 0);
402
403 ldot = DOT(np->pnorm, ldir);
404
405 if (ldot <= FTINY)
406 return;
407
408 if (bright(np->rdiff) > FTINY) {
409 /*
410 * Compute diffuse reflected component
411 */
412 copycolor(ctmp, np->rdiff);
413 dtmp = ldot * omega * (1./PI);
414 scalecolor(ctmp, dtmp);
415 addcolor(cval, ctmp);
416 }
417 if (ambRayInPmap(np->pr))
418 return; /* specular already in photon map */
419 /*
420 * Compute specular reflection coefficient using BSDF
421 */
422 if (!direct_specular_OK(ctmp, ldir, omega, np))
423 return;
424 dtmp = ldot * omega;
425 scalecolor(ctmp, dtmp);
426 addcolor(cval, ctmp);
427 }
428
429 /* Compute source contribution for BSDF (transmitted only) */
430 static void
431 dir_btdf(
432 COLOR cval, /* returned coefficient */
433 void *nnp, /* material data */
434 FVECT ldir, /* light source direction */
435 double omega /* light source size */
436 )
437 {
438 BSDFDAT *np = (BSDFDAT *)nnp;
439 double ldot;
440 double dtmp;
441 COLOR ctmp;
442
443 setcolor(cval, 0, 0, 0);
444
445 ldot = DOT(np->pnorm, ldir);
446
447 if (ldot >= -FTINY)
448 return;
449
450 if (bright(np->tdiff) > FTINY) {
451 /*
452 * Compute diffuse transmission
453 */
454 copycolor(ctmp, np->tdiff);
455 dtmp = -ldot * omega * (1./PI);
456 scalecolor(ctmp, dtmp);
457 addcolor(cval, ctmp);
458 }
459 if (ambRayInPmap(np->pr))
460 return; /* specular already in photon map */
461 /*
462 * Compute specular scattering coefficient using BSDF
463 */
464 if (!direct_specular_OK(ctmp, ldir, omega, np))
465 return;
466 /* full pattern on transmission */
467 multcolor(ctmp, np->pr->pcol);
468 dtmp = -ldot * omega;
469 scalecolor(ctmp, dtmp);
470 addcolor(cval, ctmp);
471 }
472
473 /* Sample separate BSDF component */
474 static int
475 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
476 {
477 const int hasthru = (xmit &&
478 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
479 && bright(ndp->cthru) > FTINY);
480 int nstarget = 1;
481 int nsent = 0;
482 int n;
483 SDError ec;
484 SDValue bsv;
485 double xrand;
486 FVECT vsmp, vinc;
487 RAY sr;
488 /* multiple samples? */
489 if (specjitter > 1.5) {
490 nstarget = specjitter*ndp->pr->rweight + .5;
491 nstarget += !nstarget;
492 }
493 /* run through our samples */
494 for (n = 0; n < nstarget; n++) {
495 if (nstarget == 1) { /* stratify random variable */
496 xrand = urand(ilhash(dimlist,ndims)+samplendx);
497 if (specjitter < 1.)
498 xrand = .5 + specjitter*(xrand-.5);
499 } else {
500 xrand = (n + frandom())/(double)nstarget;
501 }
502 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
503 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
504 VCOPY(vinc, vsmp); /* to compare after */
505 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
506 if (ec)
507 objerror(ndp->mp, USER, transSDError(ec));
508 if (bsv.cieY <= FTINY) /* zero component? */
509 break;
510 if (hasthru) { /* check for view ray */
511 double dx = vinc[0] + vsmp[0];
512 double dy = vinc[1] + vsmp[1];
513 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
514 continue; /* exclude view sample */
515 }
516 /* map non-view sample->world */
517 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
518 break;
519 /* spawn a specular ray */
520 if (nstarget > 1)
521 bsv.cieY /= (double)nstarget;
522 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
523 if (xmit) /* apply pattern on transmit */
524 multcolor(sr.rcoef, ndp->pr->pcol);
525 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
526 if (!n & (nstarget > 1)) {
527 n = nstarget; /* avoid infinitue loop */
528 nstarget = nstarget*sr.rweight/minweight;
529 if (n == nstarget) break;
530 n = -1; /* moved target */
531 }
532 continue; /* try again */
533 }
534 if (xmit && ndp->thick != 0) /* need to offset origin? */
535 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
536 rayvalue(&sr); /* send & evaluate sample */
537 multcolor(sr.rcol, sr.rcoef);
538 addcolor(ndp->pr->rcol, sr.rcol);
539 ++nsent;
540 }
541 return(nsent);
542 }
543
544 /* Sample non-diffuse components of BSDF */
545 static int
546 sample_sdf(BSDFDAT *ndp, int sflags)
547 {
548 int hasthru = (sflags == SDsampSpT &&
549 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
550 && bright(ndp->cthru) > FTINY);
551 int n, ntotal = 0;
552 double b = 0;
553 SDSpectralDF *dfp;
554 COLORV *unsc;
555
556 if (sflags == SDsampSpT) {
557 unsc = ndp->tunsamp;
558 if (ndp->pr->rod > 0)
559 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
560 else
561 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
562 } else /* sflags == SDsampSpR */ {
563 unsc = ndp->runsamp;
564 if (ndp->pr->rod > 0)
565 dfp = ndp->sd->rf;
566 else
567 dfp = ndp->sd->rb;
568 }
569 setcolor(unsc, 0, 0, 0);
570 if (dfp == NULL) /* no specular component? */
571 return(0);
572
573 if (hasthru) { /* separate view sample? */
574 RAY tr;
575 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
576 VCOPY(tr.rdir, ndp->pr->rdir);
577 rayvalue(&tr);
578 multcolor(tr.rcol, tr.rcoef);
579 addcolor(ndp->pr->rcol, tr.rcol);
580 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
581 ++ntotal;
582 b = bright(ndp->cthru);
583 } else
584 hasthru = 0;
585 }
586 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
587 b = 0;
588 } else {
589 FVECT vjit;
590 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
591 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
592 if (b < 0) b = 0;
593 }
594 if (b <= specthresh+FTINY) { /* below sampling threshold? */
595 if (b > FTINY) { /* XXX no color from BSDF */
596 if (sflags == SDsampSpT) {
597 copycolor(unsc, ndp->pr->pcol);
598 scalecolor(unsc, b);
599 } else /* no pattern on reflection */
600 setcolor(unsc, b, b, b);
601 }
602 return(ntotal);
603 }
604 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
605 ndims += 2;
606 for (n = dfp->ncomp; n--; ) { /* loop over components */
607 dimlist[ndims-1] = n + 9438;
608 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
609 }
610 ndims -= 2;
611 return(ntotal);
612 }
613
614 /* Color a ray that hit a BSDF material */
615 int
616 m_bsdf(OBJREC *m, RAY *r)
617 {
618 int hasthick = (m->otype == MAT_BSDF);
619 int hitfront;
620 COLOR ctmp;
621 SDError ec;
622 FVECT upvec, vtmp;
623 MFUNC *mf;
624 BSDFDAT nd;
625 /* check arguments */
626 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
627 (m->oargs.nfargs % 3))
628 objerror(m, USER, "bad # arguments");
629 /* record surface struck */
630 hitfront = (r->rod > 0);
631 /* load cal file */
632 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
633 : getfunc(m, 4, 0xe, 1) ;
634 setfunc(m, r);
635 nd.thick = 0; /* set thickness */
636 if (hasthick) {
637 nd.thick = evalue(mf->ep[0]);
638 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
639 nd.thick = 0;
640 }
641 /* check backface visibility */
642 if (!hitfront & !backvis) {
643 raytrans(r);
644 return(1);
645 }
646 /* check other rays to pass */
647 if (nd.thick != 0 && (r->crtype & SHADOW ||
648 !(r->crtype & (SPECULAR|AMBIENT)) ||
649 (nd.thick > 0) ^ hitfront)) {
650 raytrans(r); /* hide our proxy */
651 return(1);
652 }
653 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
654 return(1);
655 nd.mp = m;
656 nd.pr = r;
657 /* get BSDF data */
658 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
659 /* early shadow check #2 */
660 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
661 SDfreeCache(nd.sd);
662 return(1);
663 }
664 /* diffuse components */
665 if (hitfront) {
666 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
667 if (m->oargs.nfargs >= 3) {
668 setcolor(ctmp, m->oargs.farg[0],
669 m->oargs.farg[1],
670 m->oargs.farg[2]);
671 addcolor(nd.rdiff, ctmp);
672 }
673 cvt_sdcolor(nd.tdiff, &nd.sd->tLambFront);
674 } else {
675 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
676 if (m->oargs.nfargs >= 6) {
677 setcolor(ctmp, m->oargs.farg[3],
678 m->oargs.farg[4],
679 m->oargs.farg[5]);
680 addcolor(nd.rdiff, ctmp);
681 }
682 cvt_sdcolor(nd.tdiff, &nd.sd->tLambBack);
683 }
684 if (m->oargs.nfargs >= 9) { /* add diffuse transmittance? */
685 setcolor(ctmp, m->oargs.farg[6],
686 m->oargs.farg[7],
687 m->oargs.farg[8]);
688 addcolor(nd.tdiff, ctmp);
689 }
690 /* get modifiers */
691 raytexture(r, m->omod);
692 /* modify diffuse values */
693 multcolor(nd.rdiff, r->pcol);
694 multcolor(nd.tdiff, r->pcol);
695 /* get up vector */
696 upvec[0] = evalue(mf->ep[hasthick+0]);
697 upvec[1] = evalue(mf->ep[hasthick+1]);
698 upvec[2] = evalue(mf->ep[hasthick+2]);
699 /* return to world coords */
700 if (mf->fxp != &unitxf) {
701 multv3(upvec, upvec, mf->fxp->xfm);
702 nd.thick *= mf->fxp->sca;
703 }
704 if (r->rox != NULL) {
705 multv3(upvec, upvec, r->rox->f.xfm);
706 nd.thick *= r->rox->f.sca;
707 }
708 raynormal(nd.pnorm, r);
709 /* compute local BSDF xform */
710 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
711 if (!ec) {
712 nd.vray[0] = -r->rdir[0];
713 nd.vray[1] = -r->rdir[1];
714 nd.vray[2] = -r->rdir[2];
715 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
716 }
717 if (ec) {
718 objerror(m, WARNING, "Illegal orientation vector");
719 SDfreeCache(nd.sd);
720 return(1);
721 }
722 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
723 setcolor(nd.cthru_surr, 0, 0, 0);
724 if (m->otype == MAT_ABSDF) {
725 compute_through(&nd);
726 if (r->crtype & SHADOW) {
727 RAY tr; /* attempt to pass shadow ray */
728 SDfreeCache(nd.sd);
729 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
730 return(1); /* no through component */
731 VCOPY(tr.rdir, r->rdir);
732 rayvalue(&tr); /* transmit with scaling */
733 multcolor(tr.rcol, tr.rcoef);
734 copycolor(r->rcol, tr.rcol);
735 return(1); /* we're done */
736 }
737 }
738 ec = SDinvXform(nd.fromloc, nd.toloc);
739 if (!ec) /* determine BSDF resolution */
740 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
741 SDqueryMin+SDqueryMax, nd.sd);
742 if (ec)
743 objerror(m, USER, transSDError(ec));
744
745 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
746 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
747 if (!hitfront) { /* perturb normal towards hit */
748 nd.pnorm[0] = -nd.pnorm[0];
749 nd.pnorm[1] = -nd.pnorm[1];
750 nd.pnorm[2] = -nd.pnorm[2];
751 }
752 /* sample reflection */
753 sample_sdf(&nd, SDsampSpR);
754 /* sample transmission */
755 sample_sdf(&nd, SDsampSpT);
756 /* compute indirect diffuse */
757 copycolor(ctmp, nd.rdiff);
758 addcolor(ctmp, nd.runsamp);
759 if (bright(ctmp) > FTINY) { /* ambient from reflection */
760 if (!hitfront)
761 flipsurface(r);
762 multambient(ctmp, r, nd.pnorm);
763 addcolor(r->rcol, ctmp);
764 if (!hitfront)
765 flipsurface(r);
766 }
767 copycolor(ctmp, nd.tdiff);
768 addcolor(ctmp, nd.tunsamp);
769 if (bright(ctmp) > FTINY) { /* ambient from other side */
770 FVECT bnorm;
771 if (hitfront)
772 flipsurface(r);
773 bnorm[0] = -nd.pnorm[0];
774 bnorm[1] = -nd.pnorm[1];
775 bnorm[2] = -nd.pnorm[2];
776 if (nd.thick != 0) { /* proxy with offset? */
777 VCOPY(vtmp, r->rop);
778 VSUM(r->rop, vtmp, r->ron, nd.thick);
779 multambient(ctmp, r, bnorm);
780 VCOPY(r->rop, vtmp);
781 } else
782 multambient(ctmp, r, bnorm);
783 addcolor(r->rcol, ctmp);
784 if (hitfront)
785 flipsurface(r);
786 }
787 /* add direct component */
788 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
789 (nd.sd->tb == NULL)) {
790 direct(r, dir_brdf, &nd); /* reflection only */
791 } else if (nd.thick == 0) {
792 direct(r, dir_bsdf, &nd); /* thin surface scattering */
793 } else {
794 direct(r, dir_brdf, &nd); /* reflection first */
795 VCOPY(vtmp, r->rop); /* offset for transmitted */
796 VSUM(r->rop, vtmp, r->ron, -nd.thick);
797 direct(r, dir_btdf, &nd); /* separate transmission */
798 VCOPY(r->rop, vtmp);
799 }
800 /* clean up */
801 SDfreeCache(nd.sd);
802 return(1);
803 }