ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.65
Committed: Fri Aug 27 03:09:27 2021 UTC (2 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.64: +15 -25 lines
Log Message:
perf: Undid last change and reduced specular transmission threshold for PE to 0.05%

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.63 2021/03/27 20:08:58 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 COLOR cthru_surr; /* surround for "through" component */
91 SDData *sd; /* loaded BSDF data */
92 COLOR rdiff; /* diffuse reflection */
93 COLOR runsamp; /* BSDF hemispherical reflection */
94 COLOR tdiff; /* diffuse transmission */
95 COLOR tunsamp; /* BSDF hemispherical transmission */
96 } BSDFDAT; /* BSDF material data */
97
98 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
99
100 typedef struct {
101 double vy; /* brightness (for sorting) */
102 FVECT tdir; /* through sample direction (normalized) */
103 COLOR vcol; /* BTDF color */
104 } PEAKSAMP; /* BTDF peak sample */
105
106 /* Comparison function to put near-peak values in descending order */
107 static int
108 cmp_psamp(const void *p1, const void *p2)
109 {
110 double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
111 if (diff > 0) return(-1);
112 if (diff < 0) return(1);
113 return(0);
114 }
115
116 /* Compute "through" component color for MAT_ABSDF */
117 static void
118 compute_through(BSDFDAT *ndp)
119 {
120 #define NDIR2CHECK 29
121 static const float dir2check[NDIR2CHECK][2] = {
122 {0, 0}, {-0.6, 0}, {0, 0.6},
123 {0, -0.6}, {0.6, 0}, {-0.6, 0.6},
124 {-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
125 {-1.2, 0}, {0, 1.2}, {0, -1.2},
126 {1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
127 {1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
128 {0, 1.8}, {0, -1.8}, {1.8, 0},
129 {-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
130 {1.8, -1.8}, {-2.4, 0}, {0, 2.4},
131 {0, -2.4}, {2.4, 0},
132 };
133 PEAKSAMP psamp[NDIR2CHECK];
134 SDSpectralDF *dfp;
135 FVECT pdir;
136 double tomega, srchrad;
137 double tomsum, tomsurr;
138 COLOR vpeak, vsurr;
139 double vypeak;
140 int i, ns;
141 SDError ec;
142
143 if (ndp->pr->rod > 0)
144 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
145 else
146 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
147
148 if (dfp == NULL)
149 return; /* no specular transmission */
150 if (bright(ndp->pr->pcol) <= FTINY)
151 return; /* pattern is black, here */
152 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
153 for (i = 0; i < NDIR2CHECK; i++) {
154 SDValue sv;
155 psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
156 psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
157 psamp[i].tdir[2] = -ndp->vray[2];
158 normalize(psamp[i].tdir);
159 ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
160 if (ec)
161 goto baderror;
162 cvt_sdcolor(psamp[i].vcol, &sv);
163 psamp[i].vy = sv.cieY;
164 }
165 qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
166 if (psamp[0].vy <= FTINY)
167 return; /* zero BTDF here */
168 setcolor(vpeak, 0, 0, 0);
169 setcolor(vsurr, 0, 0, 0);
170 vypeak = tomsum = tomsurr = 0; /* combine top unique values */
171 ns = 0;
172 for (i = 0; i < NDIR2CHECK; i++) {
173 if (i && psamp[i].vy == psamp[i-1].vy)
174 continue; /* assume duplicate sample */
175
176 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
177 SDqueryMin, ndp->sd);
178 if (ec)
179 goto baderror;
180
181 scalecolor(psamp[i].vcol, tomega);
182 /* not part of peak? */
183 if (tomega > 1.5*dfp->minProjSA ||
184 vypeak > 8.*psamp[i].vy*ns) {
185 if (!i) return; /* abort */
186 addcolor(vsurr, psamp[i].vcol);
187 tomsurr += tomega;
188 continue;
189 }
190 addcolor(vpeak, psamp[i].vcol);
191 tomsum += tomega;
192 vypeak += psamp[i].vy;
193 ++ns;
194 }
195 if (tomsurr <= FTINY) /* no surround implies no peak */
196 return;
197 if ((vypeak/ns - (ndp->vray[2] > 0 ? ndp->sd->tLambFront.cieY
198 : ndp->sd->tLambBack.cieY)*(1./PI))*tomsum < .0005)
199 return; /* < 0.05% transmission */
200 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
201 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
202 scalecolor(vsurr, 1./tomsurr); /* surround is avg. BTDF */
203 copycolor(ndp->cthru_surr, vsurr);
204 multcolor(ndp->cthru_surr, ndp->pr->pcol);
205 return;
206 baderror:
207 objerror(ndp->mp, USER, transSDError(ec));
208 #undef NDIR2CHECK
209 }
210
211 /* Jitter ray sample according to projected solid angle and specjitter */
212 static void
213 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
214 {
215 VCOPY(vres, ndp->vray);
216 if (specjitter < 1.)
217 sr_psa *= specjitter;
218 if (sr_psa <= FTINY)
219 return;
220 vres[0] += sr_psa*(.5 - frandom());
221 vres[1] += sr_psa*(.5 - frandom());
222 normalize(vres);
223 }
224
225 /* Get BSDF specular for direct component, returning true if OK to proceed */
226 static int
227 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
228 {
229 int nsamp;
230 double wtot = 0;
231 FVECT vsrc, vsmp, vjit;
232 double tomega, tomega2;
233 double sf, tsr, sd[2];
234 COLOR csmp, cdiff;
235 double diffY;
236 SDValue sv;
237 SDError ec;
238 int i;
239 /* in case we fail */
240 setcolor(cval, 0, 0, 0);
241 /* transform source direction */
242 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
243 return(0);
244 /* will discount diffuse portion */
245 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
246 case 3:
247 if (ndp->sd->rf == NULL)
248 return(0); /* all diffuse */
249 sv = ndp->sd->rLambFront;
250 break;
251 case 0:
252 if (ndp->sd->rb == NULL)
253 return(0); /* all diffuse */
254 sv = ndp->sd->rLambBack;
255 break;
256 case 1:
257 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
258 return(0); /* all diffuse */
259 sv = ndp->sd->tLambFront;
260 break;
261 case 2:
262 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
263 return(0); /* all diffuse */
264 sv = ndp->sd->tLambBack;
265 break;
266 }
267 if (sv.cieY > FTINY) {
268 diffY = sv.cieY *= 1./PI;
269 cvt_sdcolor(cdiff, &sv);
270 } else {
271 diffY = 0;
272 setcolor(cdiff, 0, 0, 0);
273 }
274 /* need projected solid angle */
275 omega *= fabs(vsrc[2]);
276 /* check indirect over-counting */
277 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
278 double dx = vsrc[0] + ndp->vray[0];
279 double dy = vsrc[1] + ndp->vray[1];
280 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
281 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
282 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
283
284 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
285 2.*sqrt(omega*dfp->minProjSA))) {
286 if (bright(ndp->cthru_surr) <= FTINY)
287 return(0);
288 copycolor(cval, ndp->cthru_surr);
289 return(1); /* return non-zero surround BTDF */
290 }
291 }
292 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
293 if (ec)
294 goto baderror;
295 /* assign number of samples */
296 sf = specjitter * ndp->pr->rweight;
297 if (tomega <= 0)
298 nsamp = 1;
299 else if (25.*tomega <= omega)
300 nsamp = 100.*sf + .5;
301 else
302 nsamp = 4.*sf*omega/tomega + .5;
303 nsamp += !nsamp;
304 sf = sqrt(omega); /* sample our source area */
305 tsr = sqrt(tomega);
306 for (i = nsamp; i--; ) {
307 VCOPY(vsmp, vsrc); /* jitter query directions */
308 if (nsamp > 1) {
309 multisamp(sd, 2, (i + frandom())/(double)nsamp);
310 vsmp[0] += (sd[0] - .5)*sf;
311 vsmp[1] += (sd[1] - .5)*sf;
312 normalize(vsmp);
313 }
314 bsdf_jitter(vjit, ndp, tsr);
315 /* compute BSDF */
316 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
317 if (ec)
318 goto baderror;
319 if (sv.cieY - diffY <= FTINY)
320 continue; /* no specular part */
321 /* check for variable resolution */
322 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
323 if (ec)
324 goto baderror;
325 if (tomega2 < .12*tomega)
326 continue; /* not safe to include */
327 cvt_sdcolor(csmp, &sv);
328 #if 0
329 if (sf < 2.5*tsr) { /* weight by BSDF for small sources */
330 scalecolor(csmp, sv.cieY);
331 wtot += sv.cieY;
332 } else
333 #endif
334 wtot += 1.;
335 addcolor(cval, csmp);
336 }
337 if (wtot <= FTINY) /* no valid specular samples? */
338 return(0);
339
340 sf = 1./wtot; /* weighted average BSDF */
341 scalecolor(cval, sf);
342 /* subtract diffuse contribution */
343 for (i = 3*(diffY > FTINY); i--; )
344 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
345 colval(cval,i) = 0;
346 return(1);
347 baderror:
348 objerror(ndp->mp, USER, transSDError(ec));
349 return(0); /* gratis return */
350 }
351
352 /* Compute source contribution for BSDF (reflected & transmitted) */
353 static void
354 dir_bsdf(
355 COLOR cval, /* returned coefficient */
356 void *nnp, /* material data */
357 FVECT ldir, /* light source direction */
358 double omega /* light source size */
359 )
360 {
361 BSDFDAT *np = (BSDFDAT *)nnp;
362 double ldot;
363 double dtmp;
364 COLOR ctmp;
365
366 setcolor(cval, 0, 0, 0);
367
368 ldot = DOT(np->pnorm, ldir);
369 if ((-FTINY <= ldot) & (ldot <= FTINY))
370 return;
371
372 if (ldot > 0 && bright(np->rdiff) > FTINY) {
373 /*
374 * Compute diffuse reflected component
375 */
376 copycolor(ctmp, np->rdiff);
377 dtmp = ldot * omega * (1./PI);
378 scalecolor(ctmp, dtmp);
379 addcolor(cval, ctmp);
380 }
381 if (ldot < 0 && bright(np->tdiff) > FTINY) {
382 /*
383 * Compute diffuse transmission
384 */
385 copycolor(ctmp, np->tdiff);
386 dtmp = -ldot * omega * (1.0/PI);
387 scalecolor(ctmp, dtmp);
388 addcolor(cval, ctmp);
389 }
390 if (ambRayInPmap(np->pr))
391 return; /* specular already in photon map */
392 /*
393 * Compute specular scattering coefficient using BSDF
394 */
395 if (!direct_specular_OK(ctmp, ldir, omega, np))
396 return;
397 if (ldot < 0) { /* pattern for specular transmission */
398 multcolor(ctmp, np->pr->pcol);
399 dtmp = -ldot * omega;
400 } else
401 dtmp = ldot * omega;
402 scalecolor(ctmp, dtmp);
403 addcolor(cval, ctmp);
404 }
405
406 /* Compute source contribution for BSDF (reflected only) */
407 static void
408 dir_brdf(
409 COLOR cval, /* returned coefficient */
410 void *nnp, /* material data */
411 FVECT ldir, /* light source direction */
412 double omega /* light source size */
413 )
414 {
415 BSDFDAT *np = (BSDFDAT *)nnp;
416 double ldot;
417 double dtmp;
418 COLOR ctmp, ctmp1, ctmp2;
419
420 setcolor(cval, 0, 0, 0);
421
422 ldot = DOT(np->pnorm, ldir);
423
424 if (ldot <= FTINY)
425 return;
426
427 if (bright(np->rdiff) > FTINY) {
428 /*
429 * Compute diffuse reflected component
430 */
431 copycolor(ctmp, np->rdiff);
432 dtmp = ldot * omega * (1./PI);
433 scalecolor(ctmp, dtmp);
434 addcolor(cval, ctmp);
435 }
436 if (ambRayInPmap(np->pr))
437 return; /* specular already in photon map */
438 /*
439 * Compute specular reflection coefficient using BSDF
440 */
441 if (!direct_specular_OK(ctmp, ldir, omega, np))
442 return;
443 dtmp = ldot * omega;
444 scalecolor(ctmp, dtmp);
445 addcolor(cval, ctmp);
446 }
447
448 /* Compute source contribution for BSDF (transmitted only) */
449 static void
450 dir_btdf(
451 COLOR cval, /* returned coefficient */
452 void *nnp, /* material data */
453 FVECT ldir, /* light source direction */
454 double omega /* light source size */
455 )
456 {
457 BSDFDAT *np = (BSDFDAT *)nnp;
458 double ldot;
459 double dtmp;
460 COLOR ctmp;
461
462 setcolor(cval, 0, 0, 0);
463
464 ldot = DOT(np->pnorm, ldir);
465
466 if (ldot >= -FTINY)
467 return;
468
469 if (bright(np->tdiff) > FTINY) {
470 /*
471 * Compute diffuse transmission
472 */
473 copycolor(ctmp, np->tdiff);
474 dtmp = -ldot * omega * (1.0/PI);
475 scalecolor(ctmp, dtmp);
476 addcolor(cval, ctmp);
477 }
478 if (ambRayInPmap(np->pr))
479 return; /* specular already in photon map */
480 /*
481 * Compute specular scattering coefficient using BSDF
482 */
483 if (!direct_specular_OK(ctmp, ldir, omega, np))
484 return;
485 /* full pattern on transmission */
486 multcolor(ctmp, np->pr->pcol);
487 dtmp = -ldot * omega;
488 scalecolor(ctmp, dtmp);
489 addcolor(cval, ctmp);
490 }
491
492 /* Sample separate BSDF component */
493 static int
494 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
495 {
496 const int hasthru = (xmit &&
497 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
498 && bright(ndp->cthru) > FTINY);
499 int nstarget = 1;
500 int nsent = 0;
501 int n;
502 SDError ec;
503 SDValue bsv;
504 double xrand;
505 FVECT vsmp, vinc;
506 RAY sr;
507 /* multiple samples? */
508 if (specjitter > 1.5) {
509 nstarget = specjitter*ndp->pr->rweight + .5;
510 nstarget += !nstarget;
511 }
512 /* run through our samples */
513 for (n = 0; n < nstarget; n++) {
514 if (nstarget == 1) { /* stratify random variable */
515 xrand = urand(ilhash(dimlist,ndims)+samplendx);
516 if (specjitter < 1.)
517 xrand = .5 + specjitter*(xrand-.5);
518 } else {
519 xrand = (n + frandom())/(double)nstarget;
520 }
521 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
522 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
523 VCOPY(vinc, vsmp); /* to compare after */
524 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
525 if (ec)
526 objerror(ndp->mp, USER, transSDError(ec));
527 if (bsv.cieY <= FTINY) /* zero component? */
528 break;
529 if (hasthru) { /* check for view ray */
530 double dx = vinc[0] + vsmp[0];
531 double dy = vinc[1] + vsmp[1];
532 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
533 continue; /* exclude view sample */
534 }
535 /* map non-view sample->world */
536 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
537 break;
538 /* spawn a specular ray */
539 if (nstarget > 1)
540 bsv.cieY /= (double)nstarget;
541 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
542 if (xmit) /* apply pattern on transmit */
543 multcolor(sr.rcoef, ndp->pr->pcol);
544 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
545 if (!n & (nstarget > 1)) {
546 n = nstarget; /* avoid infinitue loop */
547 nstarget = nstarget*sr.rweight/minweight;
548 if (n == nstarget) break;
549 n = -1; /* moved target */
550 }
551 continue; /* try again */
552 }
553 if (xmit && ndp->thick != 0) /* need to offset origin? */
554 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
555 rayvalue(&sr); /* send & evaluate sample */
556 multcolor(sr.rcol, sr.rcoef);
557 addcolor(ndp->pr->rcol, sr.rcol);
558 ++nsent;
559 }
560 return(nsent);
561 }
562
563 /* Sample non-diffuse components of BSDF */
564 static int
565 sample_sdf(BSDFDAT *ndp, int sflags)
566 {
567 int hasthru = (sflags == SDsampSpT &&
568 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
569 && bright(ndp->cthru) > FTINY);
570 int n, ntotal = 0;
571 double b = 0;
572 SDSpectralDF *dfp;
573 COLORV *unsc;
574
575 if (sflags == SDsampSpT) {
576 unsc = ndp->tunsamp;
577 if (ndp->pr->rod > 0)
578 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
579 else
580 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
581 } else /* sflags == SDsampSpR */ {
582 unsc = ndp->runsamp;
583 if (ndp->pr->rod > 0)
584 dfp = ndp->sd->rf;
585 else
586 dfp = ndp->sd->rb;
587 }
588 setcolor(unsc, 0, 0, 0);
589 if (dfp == NULL) /* no specular component? */
590 return(0);
591
592 if (hasthru) { /* separate view sample? */
593 RAY tr;
594 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
595 VCOPY(tr.rdir, ndp->pr->rdir);
596 rayvalue(&tr);
597 multcolor(tr.rcol, tr.rcoef);
598 addcolor(ndp->pr->rcol, tr.rcol);
599 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
600 ++ntotal;
601 b = bright(ndp->cthru);
602 } else
603 hasthru = 0;
604 }
605 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
606 b = 0;
607 } else {
608 FVECT vjit;
609 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
610 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
611 if (b < 0) b = 0;
612 }
613 if (b <= specthresh+FTINY) { /* below sampling threshold? */
614 if (b > FTINY) { /* XXX no color from BSDF */
615 if (sflags == SDsampSpT) {
616 copycolor(unsc, ndp->pr->pcol);
617 scalecolor(unsc, b);
618 } else /* no pattern on reflection */
619 setcolor(unsc, b, b, b);
620 }
621 return(ntotal);
622 }
623 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
624 ndims += 2;
625 for (n = dfp->ncomp; n--; ) { /* loop over components */
626 dimlist[ndims-1] = n + 9438;
627 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
628 }
629 ndims -= 2;
630 return(ntotal);
631 }
632
633 /* Color a ray that hit a BSDF material */
634 int
635 m_bsdf(OBJREC *m, RAY *r)
636 {
637 int hasthick = (m->otype == MAT_BSDF);
638 int hitfront;
639 COLOR ctmp;
640 SDError ec;
641 FVECT upvec, vtmp;
642 MFUNC *mf;
643 BSDFDAT nd;
644 /* check arguments */
645 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
646 (m->oargs.nfargs % 3))
647 objerror(m, USER, "bad # arguments");
648 /* record surface struck */
649 hitfront = (r->rod > 0);
650 /* load cal file */
651 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
652 : getfunc(m, 4, 0xe, 1) ;
653 setfunc(m, r);
654 nd.thick = 0; /* set thickness */
655 if (hasthick) {
656 nd.thick = evalue(mf->ep[0]);
657 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
658 nd.thick = 0;
659 }
660 /* check backface visibility */
661 if (!hitfront & !backvis) {
662 raytrans(r);
663 return(1);
664 }
665 /* check other rays to pass */
666 if (nd.thick != 0 && (r->crtype & SHADOW ||
667 !(r->crtype & (SPECULAR|AMBIENT)) ||
668 (nd.thick > 0) ^ hitfront)) {
669 raytrans(r); /* hide our proxy */
670 return(1);
671 }
672 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
673 return(1);
674 nd.mp = m;
675 nd.pr = r;
676 /* get BSDF data */
677 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
678 /* early shadow check #2 */
679 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
680 SDfreeCache(nd.sd);
681 return(1);
682 }
683 /* diffuse components */
684 if (hitfront) {
685 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
686 if (m->oargs.nfargs >= 3) {
687 setcolor(ctmp, m->oargs.farg[0],
688 m->oargs.farg[1],
689 m->oargs.farg[2]);
690 addcolor(nd.rdiff, ctmp);
691 }
692 cvt_sdcolor(nd.tdiff, &nd.sd->tLambFront);
693 } else {
694 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
695 if (m->oargs.nfargs >= 6) {
696 setcolor(ctmp, m->oargs.farg[3],
697 m->oargs.farg[4],
698 m->oargs.farg[5]);
699 addcolor(nd.rdiff, ctmp);
700 }
701 cvt_sdcolor(nd.tdiff, &nd.sd->tLambBack);
702 }
703 if (m->oargs.nfargs >= 9) { /* add diffuse transmittance? */
704 setcolor(ctmp, m->oargs.farg[6],
705 m->oargs.farg[7],
706 m->oargs.farg[8]);
707 addcolor(nd.tdiff, ctmp);
708 }
709 /* get modifiers */
710 raytexture(r, m->omod);
711 /* modify diffuse values */
712 multcolor(nd.rdiff, r->pcol);
713 multcolor(nd.tdiff, r->pcol);
714 /* get up vector */
715 upvec[0] = evalue(mf->ep[hasthick+0]);
716 upvec[1] = evalue(mf->ep[hasthick+1]);
717 upvec[2] = evalue(mf->ep[hasthick+2]);
718 /* return to world coords */
719 if (mf->fxp != &unitxf) {
720 multv3(upvec, upvec, mf->fxp->xfm);
721 nd.thick *= mf->fxp->sca;
722 }
723 if (r->rox != NULL) {
724 multv3(upvec, upvec, r->rox->f.xfm);
725 nd.thick *= r->rox->f.sca;
726 }
727 raynormal(nd.pnorm, r);
728 /* compute local BSDF xform */
729 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
730 if (!ec) {
731 nd.vray[0] = -r->rdir[0];
732 nd.vray[1] = -r->rdir[1];
733 nd.vray[2] = -r->rdir[2];
734 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
735 }
736 if (ec) {
737 objerror(m, WARNING, "Illegal orientation vector");
738 SDfreeCache(nd.sd);
739 return(1);
740 }
741 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
742 setcolor(nd.cthru_surr, 0, 0, 0);
743 if (m->otype == MAT_ABSDF) {
744 compute_through(&nd);
745 if (r->crtype & SHADOW) {
746 RAY tr; /* attempt to pass shadow ray */
747 SDfreeCache(nd.sd);
748 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
749 return(1); /* no through component */
750 VCOPY(tr.rdir, r->rdir);
751 rayvalue(&tr); /* transmit with scaling */
752 multcolor(tr.rcol, tr.rcoef);
753 copycolor(r->rcol, tr.rcol);
754 return(1); /* we're done */
755 }
756 }
757 ec = SDinvXform(nd.fromloc, nd.toloc);
758 if (!ec) /* determine BSDF resolution */
759 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
760 SDqueryMin+SDqueryMax, nd.sd);
761 if (ec)
762 objerror(m, USER, transSDError(ec));
763
764 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
765 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
766 if (!hitfront) { /* perturb normal towards hit */
767 nd.pnorm[0] = -nd.pnorm[0];
768 nd.pnorm[1] = -nd.pnorm[1];
769 nd.pnorm[2] = -nd.pnorm[2];
770 }
771 /* sample reflection */
772 sample_sdf(&nd, SDsampSpR);
773 /* sample transmission */
774 sample_sdf(&nd, SDsampSpT);
775 /* compute indirect diffuse */
776 copycolor(ctmp, nd.rdiff);
777 addcolor(ctmp, nd.runsamp);
778 if (bright(ctmp) > FTINY) { /* ambient from reflection */
779 if (!hitfront)
780 flipsurface(r);
781 multambient(ctmp, r, nd.pnorm);
782 addcolor(r->rcol, ctmp);
783 if (!hitfront)
784 flipsurface(r);
785 }
786 copycolor(ctmp, nd.tdiff);
787 addcolor(ctmp, nd.tunsamp);
788 if (bright(ctmp) > FTINY) { /* ambient from other side */
789 FVECT bnorm;
790 if (hitfront)
791 flipsurface(r);
792 bnorm[0] = -nd.pnorm[0];
793 bnorm[1] = -nd.pnorm[1];
794 bnorm[2] = -nd.pnorm[2];
795 if (nd.thick != 0) { /* proxy with offset? */
796 VCOPY(vtmp, r->rop);
797 VSUM(r->rop, vtmp, r->ron, nd.thick);
798 multambient(ctmp, r, bnorm);
799 VCOPY(r->rop, vtmp);
800 } else
801 multambient(ctmp, r, bnorm);
802 addcolor(r->rcol, ctmp);
803 if (hitfront)
804 flipsurface(r);
805 }
806 /* add direct component */
807 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
808 (nd.sd->tb == NULL)) {
809 direct(r, dir_brdf, &nd); /* reflection only */
810 } else if (nd.thick == 0) {
811 direct(r, dir_bsdf, &nd); /* thin surface scattering */
812 } else {
813 direct(r, dir_brdf, &nd); /* reflection first */
814 VCOPY(vtmp, r->rop); /* offset for transmitted */
815 VSUM(r->rop, vtmp, r->ron, -nd.thick);
816 direct(r, dir_btdf, &nd); /* separate transmission */
817 VCOPY(r->rop, vtmp);
818 }
819 /* clean up */
820 SDfreeCache(nd.sd);
821 return(1);
822 }