ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.64
Committed: Wed Aug 25 16:12:21 2021 UTC (2 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.63: +11 -4 lines
Log Message:
fix: Improved duplicate sample testing, which improves peak extraction

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.63 2021/03/27 20:08:58 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 COLOR cthru_surr; /* surround for "through" component */
91 SDData *sd; /* loaded BSDF data */
92 COLOR rdiff; /* diffuse reflection */
93 COLOR runsamp; /* BSDF hemispherical reflection */
94 COLOR tdiff; /* diffuse transmission */
95 COLOR tunsamp; /* BSDF hemispherical transmission */
96 } BSDFDAT; /* BSDF material data */
97
98 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
99
100 typedef struct {
101 double vy; /* brightness (for sorting) */
102 FVECT tdir; /* through sample direction (normalized) */
103 COLOR vcol; /* BTDF color */
104 } PEAKSAMP; /* BTDF peak sample */
105
106 /* Comparison function to put near-peak values in descending order */
107 static int
108 cmp_psamp(const void *p1, const void *p2)
109 {
110 double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
111 if (diff > 0) return(-1);
112 if (diff < 0) return(1);
113 return(0);
114 }
115
116 /* Compute "through" component color for MAT_ABSDF */
117 static void
118 compute_through(BSDFDAT *ndp)
119 {
120 #define NDIR2CHECK 29
121 static const float dir2check[NDIR2CHECK][2] = {
122 {0, 0}, {-0.6, 0}, {0, 0.6},
123 {0, -0.6}, {0.6, 0}, {-0.6, 0.6},
124 {-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
125 {-1.2, 0}, {0, 1.2}, {0, -1.2},
126 {1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
127 {1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
128 {0, 1.8}, {0, -1.8}, {1.8, 0},
129 {-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
130 {1.8, -1.8}, {-2.4, 0}, {0, 2.4},
131 {0, -2.4}, {2.4, 0},
132 };
133 #define neighbors(i,j) \
134 ((dir2check[i][0]-dir2check[j][0])*(dir2check[i][0]-dir2check[j][0]) + \
135 (dir2check[i][1]-dir2check[j][1])*(dir2check[i][1]-dir2check[j][1]) <= 0.73)
136 const double peak_over = 1.5;
137 PEAKSAMP psamp[NDIR2CHECK];
138 SDSpectralDF *dfp;
139 FVECT pdir;
140 double tomega, srchrad;
141 double tomsum, tomsurr;
142 COLOR vpeak, vsurr;
143 double vypeak;
144 int i, j, ns;
145 SDError ec;
146
147 if (ndp->pr->rod > 0)
148 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
149 else
150 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
151
152 if (dfp == NULL)
153 return; /* no specular transmission */
154 if (bright(ndp->pr->pcol) <= FTINY)
155 return; /* pattern is black, here */
156 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
157 for (i = 0; i < NDIR2CHECK; i++) {
158 SDValue sv;
159 psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
160 psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
161 psamp[i].tdir[2] = -ndp->vray[2];
162 normalize(psamp[i].tdir);
163 ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
164 if (ec)
165 goto baderror;
166 cvt_sdcolor(psamp[i].vcol, &sv);
167 psamp[i].vy = sv.cieY;
168 }
169 qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
170 if (psamp[0].vy <= FTINY)
171 return; /* zero area */
172 setcolor(vpeak, 0, 0, 0);
173 setcolor(vsurr, 0, 0, 0);
174 vypeak = tomsum = tomsurr = 0; /* combine top unique values */
175 ns = 0;
176 for (i = 0; i < NDIR2CHECK; i++) {
177 for (j = i; j--; ) /* check for duplicate sample */
178 if (psamp[j].vy == psamp[i].vy && neighbors(i,j))
179 break;
180 if (j >= 0)
181 continue; /* skip duplicate */
182
183 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
184 SDqueryMin, ndp->sd);
185 if (ec)
186 goto baderror;
187 /* not really a peak? */
188 if (tomega > 1.5*dfp->minProjSA ||
189 vypeak > 8.*psamp[i].vy*ns) {
190 if (!i) return; /* abort */
191 scalecolor(psamp[i].vcol, tomega);
192 addcolor(vsurr, psamp[i].vcol);
193 tomsurr += tomega;
194 continue;
195 }
196 scalecolor(psamp[i].vcol, tomega);
197 addcolor(vpeak, psamp[i].vcol);
198 tomsum += tomega;
199 vypeak += psamp[i].vy;
200 ++ns;
201 }
202 if (vypeak*tomsurr < peak_over*bright(vsurr)*ns)
203 return; /* peak not peaky enough */
204 if ((vypeak/ns - (ndp->vray[2] > 0 ? ndp->sd->tLambFront.cieY
205 : ndp->sd->tLambBack.cieY)*(1./PI))*tomsum <= .001)
206 return; /* < 0.1% transmission */
207 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
208 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
209 if (tomsurr > FTINY) { /* surround contribution? */
210 scalecolor(vsurr, 1./tomsurr); /* this one is avg. BTDF */
211 copycolor(ndp->cthru_surr, vsurr);
212 multcolor(ndp->cthru_surr, ndp->pr->pcol);
213 }
214 return;
215 baderror:
216 objerror(ndp->mp, USER, transSDError(ec));
217 #undef neighbors
218 #undef NDIR2CHECK
219 }
220
221 /* Jitter ray sample according to projected solid angle and specjitter */
222 static void
223 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
224 {
225 VCOPY(vres, ndp->vray);
226 if (specjitter < 1.)
227 sr_psa *= specjitter;
228 if (sr_psa <= FTINY)
229 return;
230 vres[0] += sr_psa*(.5 - frandom());
231 vres[1] += sr_psa*(.5 - frandom());
232 normalize(vres);
233 }
234
235 /* Get BSDF specular for direct component, returning true if OK to proceed */
236 static int
237 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
238 {
239 int nsamp;
240 double wtot = 0;
241 FVECT vsrc, vsmp, vjit;
242 double tomega, tomega2;
243 double sf, tsr, sd[2];
244 COLOR csmp, cdiff;
245 double diffY;
246 SDValue sv;
247 SDError ec;
248 int i;
249 /* in case we fail */
250 setcolor(cval, 0, 0, 0);
251 /* transform source direction */
252 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
253 return(0);
254 /* will discount diffuse portion */
255 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
256 case 3:
257 if (ndp->sd->rf == NULL)
258 return(0); /* all diffuse */
259 sv = ndp->sd->rLambFront;
260 break;
261 case 0:
262 if (ndp->sd->rb == NULL)
263 return(0); /* all diffuse */
264 sv = ndp->sd->rLambBack;
265 break;
266 case 1:
267 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
268 return(0); /* all diffuse */
269 sv = ndp->sd->tLambFront;
270 break;
271 case 2:
272 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
273 return(0); /* all diffuse */
274 sv = ndp->sd->tLambBack;
275 break;
276 }
277 if (sv.cieY > FTINY) {
278 diffY = sv.cieY *= 1./PI;
279 cvt_sdcolor(cdiff, &sv);
280 } else {
281 diffY = 0;
282 setcolor(cdiff, 0, 0, 0);
283 }
284 /* need projected solid angle */
285 omega *= fabs(vsrc[2]);
286 /* check indirect over-counting */
287 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
288 double dx = vsrc[0] + ndp->vray[0];
289 double dy = vsrc[1] + ndp->vray[1];
290 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
291 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
292 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
293
294 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
295 2.*sqrt(omega*dfp->minProjSA))) {
296 if (bright(ndp->cthru_surr) <= FTINY)
297 return(0);
298 copycolor(cval, ndp->cthru_surr);
299 return(1); /* return non-zero surround BTDF */
300 }
301 }
302 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
303 if (ec)
304 goto baderror;
305 /* assign number of samples */
306 sf = specjitter * ndp->pr->rweight;
307 if (tomega <= 0)
308 nsamp = 1;
309 else if (25.*tomega <= omega)
310 nsamp = 100.*sf + .5;
311 else
312 nsamp = 4.*sf*omega/tomega + .5;
313 nsamp += !nsamp;
314 sf = sqrt(omega); /* sample our source area */
315 tsr = sqrt(tomega);
316 for (i = nsamp; i--; ) {
317 VCOPY(vsmp, vsrc); /* jitter query directions */
318 if (nsamp > 1) {
319 multisamp(sd, 2, (i + frandom())/(double)nsamp);
320 vsmp[0] += (sd[0] - .5)*sf;
321 vsmp[1] += (sd[1] - .5)*sf;
322 normalize(vsmp);
323 }
324 bsdf_jitter(vjit, ndp, tsr);
325 /* compute BSDF */
326 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
327 if (ec)
328 goto baderror;
329 if (sv.cieY - diffY <= FTINY)
330 continue; /* no specular part */
331 /* check for variable resolution */
332 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
333 if (ec)
334 goto baderror;
335 if (tomega2 < .12*tomega)
336 continue; /* not safe to include */
337 cvt_sdcolor(csmp, &sv);
338 #if 0
339 if (sf < 2.5*tsr) { /* weight by BSDF for small sources */
340 scalecolor(csmp, sv.cieY);
341 wtot += sv.cieY;
342 } else
343 #endif
344 wtot += 1.;
345 addcolor(cval, csmp);
346 }
347 if (wtot <= FTINY) /* no valid specular samples? */
348 return(0);
349
350 sf = 1./wtot; /* weighted average BSDF */
351 scalecolor(cval, sf);
352 /* subtract diffuse contribution */
353 for (i = 3*(diffY > FTINY); i--; )
354 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
355 colval(cval,i) = 0;
356 return(1);
357 baderror:
358 objerror(ndp->mp, USER, transSDError(ec));
359 return(0); /* gratis return */
360 }
361
362 /* Compute source contribution for BSDF (reflected & transmitted) */
363 static void
364 dir_bsdf(
365 COLOR cval, /* returned coefficient */
366 void *nnp, /* material data */
367 FVECT ldir, /* light source direction */
368 double omega /* light source size */
369 )
370 {
371 BSDFDAT *np = (BSDFDAT *)nnp;
372 double ldot;
373 double dtmp;
374 COLOR ctmp;
375
376 setcolor(cval, 0, 0, 0);
377
378 ldot = DOT(np->pnorm, ldir);
379 if ((-FTINY <= ldot) & (ldot <= FTINY))
380 return;
381
382 if (ldot > 0 && bright(np->rdiff) > FTINY) {
383 /*
384 * Compute diffuse reflected component
385 */
386 copycolor(ctmp, np->rdiff);
387 dtmp = ldot * omega * (1./PI);
388 scalecolor(ctmp, dtmp);
389 addcolor(cval, ctmp);
390 }
391 if (ldot < 0 && bright(np->tdiff) > FTINY) {
392 /*
393 * Compute diffuse transmission
394 */
395 copycolor(ctmp, np->tdiff);
396 dtmp = -ldot * omega * (1.0/PI);
397 scalecolor(ctmp, dtmp);
398 addcolor(cval, ctmp);
399 }
400 if (ambRayInPmap(np->pr))
401 return; /* specular already in photon map */
402 /*
403 * Compute specular scattering coefficient using BSDF
404 */
405 if (!direct_specular_OK(ctmp, ldir, omega, np))
406 return;
407 if (ldot < 0) { /* pattern for specular transmission */
408 multcolor(ctmp, np->pr->pcol);
409 dtmp = -ldot * omega;
410 } else
411 dtmp = ldot * omega;
412 scalecolor(ctmp, dtmp);
413 addcolor(cval, ctmp);
414 }
415
416 /* Compute source contribution for BSDF (reflected only) */
417 static void
418 dir_brdf(
419 COLOR cval, /* returned coefficient */
420 void *nnp, /* material data */
421 FVECT ldir, /* light source direction */
422 double omega /* light source size */
423 )
424 {
425 BSDFDAT *np = (BSDFDAT *)nnp;
426 double ldot;
427 double dtmp;
428 COLOR ctmp, ctmp1, ctmp2;
429
430 setcolor(cval, 0, 0, 0);
431
432 ldot = DOT(np->pnorm, ldir);
433
434 if (ldot <= FTINY)
435 return;
436
437 if (bright(np->rdiff) > FTINY) {
438 /*
439 * Compute diffuse reflected component
440 */
441 copycolor(ctmp, np->rdiff);
442 dtmp = ldot * omega * (1./PI);
443 scalecolor(ctmp, dtmp);
444 addcolor(cval, ctmp);
445 }
446 if (ambRayInPmap(np->pr))
447 return; /* specular already in photon map */
448 /*
449 * Compute specular reflection coefficient using BSDF
450 */
451 if (!direct_specular_OK(ctmp, ldir, omega, np))
452 return;
453 dtmp = ldot * omega;
454 scalecolor(ctmp, dtmp);
455 addcolor(cval, ctmp);
456 }
457
458 /* Compute source contribution for BSDF (transmitted only) */
459 static void
460 dir_btdf(
461 COLOR cval, /* returned coefficient */
462 void *nnp, /* material data */
463 FVECT ldir, /* light source direction */
464 double omega /* light source size */
465 )
466 {
467 BSDFDAT *np = (BSDFDAT *)nnp;
468 double ldot;
469 double dtmp;
470 COLOR ctmp;
471
472 setcolor(cval, 0, 0, 0);
473
474 ldot = DOT(np->pnorm, ldir);
475
476 if (ldot >= -FTINY)
477 return;
478
479 if (bright(np->tdiff) > FTINY) {
480 /*
481 * Compute diffuse transmission
482 */
483 copycolor(ctmp, np->tdiff);
484 dtmp = -ldot * omega * (1.0/PI);
485 scalecolor(ctmp, dtmp);
486 addcolor(cval, ctmp);
487 }
488 if (ambRayInPmap(np->pr))
489 return; /* specular already in photon map */
490 /*
491 * Compute specular scattering coefficient using BSDF
492 */
493 if (!direct_specular_OK(ctmp, ldir, omega, np))
494 return;
495 /* full pattern on transmission */
496 multcolor(ctmp, np->pr->pcol);
497 dtmp = -ldot * omega;
498 scalecolor(ctmp, dtmp);
499 addcolor(cval, ctmp);
500 }
501
502 /* Sample separate BSDF component */
503 static int
504 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
505 {
506 const int hasthru = (xmit &&
507 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
508 && bright(ndp->cthru) > FTINY);
509 int nstarget = 1;
510 int nsent = 0;
511 int n;
512 SDError ec;
513 SDValue bsv;
514 double xrand;
515 FVECT vsmp, vinc;
516 RAY sr;
517 /* multiple samples? */
518 if (specjitter > 1.5) {
519 nstarget = specjitter*ndp->pr->rweight + .5;
520 nstarget += !nstarget;
521 }
522 /* run through our samples */
523 for (n = 0; n < nstarget; n++) {
524 if (nstarget == 1) { /* stratify random variable */
525 xrand = urand(ilhash(dimlist,ndims)+samplendx);
526 if (specjitter < 1.)
527 xrand = .5 + specjitter*(xrand-.5);
528 } else {
529 xrand = (n + frandom())/(double)nstarget;
530 }
531 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
532 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
533 VCOPY(vinc, vsmp); /* to compare after */
534 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
535 if (ec)
536 objerror(ndp->mp, USER, transSDError(ec));
537 if (bsv.cieY <= FTINY) /* zero component? */
538 break;
539 if (hasthru) { /* check for view ray */
540 double dx = vinc[0] + vsmp[0];
541 double dy = vinc[1] + vsmp[1];
542 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
543 continue; /* exclude view sample */
544 }
545 /* map non-view sample->world */
546 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
547 break;
548 /* spawn a specular ray */
549 if (nstarget > 1)
550 bsv.cieY /= (double)nstarget;
551 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
552 if (xmit) /* apply pattern on transmit */
553 multcolor(sr.rcoef, ndp->pr->pcol);
554 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
555 if (!n & (nstarget > 1)) {
556 n = nstarget; /* avoid infinitue loop */
557 nstarget = nstarget*sr.rweight/minweight;
558 if (n == nstarget) break;
559 n = -1; /* moved target */
560 }
561 continue; /* try again */
562 }
563 if (xmit && ndp->thick != 0) /* need to offset origin? */
564 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
565 rayvalue(&sr); /* send & evaluate sample */
566 multcolor(sr.rcol, sr.rcoef);
567 addcolor(ndp->pr->rcol, sr.rcol);
568 ++nsent;
569 }
570 return(nsent);
571 }
572
573 /* Sample non-diffuse components of BSDF */
574 static int
575 sample_sdf(BSDFDAT *ndp, int sflags)
576 {
577 int hasthru = (sflags == SDsampSpT &&
578 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
579 && bright(ndp->cthru) > FTINY);
580 int n, ntotal = 0;
581 double b = 0;
582 SDSpectralDF *dfp;
583 COLORV *unsc;
584
585 if (sflags == SDsampSpT) {
586 unsc = ndp->tunsamp;
587 if (ndp->pr->rod > 0)
588 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
589 else
590 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
591 } else /* sflags == SDsampSpR */ {
592 unsc = ndp->runsamp;
593 if (ndp->pr->rod > 0)
594 dfp = ndp->sd->rf;
595 else
596 dfp = ndp->sd->rb;
597 }
598 setcolor(unsc, 0, 0, 0);
599 if (dfp == NULL) /* no specular component? */
600 return(0);
601
602 if (hasthru) { /* separate view sample? */
603 RAY tr;
604 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
605 VCOPY(tr.rdir, ndp->pr->rdir);
606 rayvalue(&tr);
607 multcolor(tr.rcol, tr.rcoef);
608 addcolor(ndp->pr->rcol, tr.rcol);
609 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
610 ++ntotal;
611 b = bright(ndp->cthru);
612 } else
613 hasthru = 0;
614 }
615 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
616 b = 0;
617 } else {
618 FVECT vjit;
619 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
620 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
621 if (b < 0) b = 0;
622 }
623 if (b <= specthresh+FTINY) { /* below sampling threshold? */
624 if (b > FTINY) { /* XXX no color from BSDF */
625 if (sflags == SDsampSpT) {
626 copycolor(unsc, ndp->pr->pcol);
627 scalecolor(unsc, b);
628 } else /* no pattern on reflection */
629 setcolor(unsc, b, b, b);
630 }
631 return(ntotal);
632 }
633 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
634 ndims += 2;
635 for (n = dfp->ncomp; n--; ) { /* loop over components */
636 dimlist[ndims-1] = n + 9438;
637 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
638 }
639 ndims -= 2;
640 return(ntotal);
641 }
642
643 /* Color a ray that hit a BSDF material */
644 int
645 m_bsdf(OBJREC *m, RAY *r)
646 {
647 int hasthick = (m->otype == MAT_BSDF);
648 int hitfront;
649 COLOR ctmp;
650 SDError ec;
651 FVECT upvec, vtmp;
652 MFUNC *mf;
653 BSDFDAT nd;
654 /* check arguments */
655 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
656 (m->oargs.nfargs % 3))
657 objerror(m, USER, "bad # arguments");
658 /* record surface struck */
659 hitfront = (r->rod > 0);
660 /* load cal file */
661 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
662 : getfunc(m, 4, 0xe, 1) ;
663 setfunc(m, r);
664 nd.thick = 0; /* set thickness */
665 if (hasthick) {
666 nd.thick = evalue(mf->ep[0]);
667 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
668 nd.thick = 0;
669 }
670 /* check backface visibility */
671 if (!hitfront & !backvis) {
672 raytrans(r);
673 return(1);
674 }
675 /* check other rays to pass */
676 if (nd.thick != 0 && (r->crtype & SHADOW ||
677 !(r->crtype & (SPECULAR|AMBIENT)) ||
678 (nd.thick > 0) ^ hitfront)) {
679 raytrans(r); /* hide our proxy */
680 return(1);
681 }
682 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
683 return(1);
684 nd.mp = m;
685 nd.pr = r;
686 /* get BSDF data */
687 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
688 /* early shadow check #2 */
689 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
690 SDfreeCache(nd.sd);
691 return(1);
692 }
693 /* diffuse components */
694 if (hitfront) {
695 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
696 if (m->oargs.nfargs >= 3) {
697 setcolor(ctmp, m->oargs.farg[0],
698 m->oargs.farg[1],
699 m->oargs.farg[2]);
700 addcolor(nd.rdiff, ctmp);
701 }
702 cvt_sdcolor(nd.tdiff, &nd.sd->tLambFront);
703 } else {
704 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
705 if (m->oargs.nfargs >= 6) {
706 setcolor(ctmp, m->oargs.farg[3],
707 m->oargs.farg[4],
708 m->oargs.farg[5]);
709 addcolor(nd.rdiff, ctmp);
710 }
711 cvt_sdcolor(nd.tdiff, &nd.sd->tLambBack);
712 }
713 if (m->oargs.nfargs >= 9) { /* add diffuse transmittance? */
714 setcolor(ctmp, m->oargs.farg[6],
715 m->oargs.farg[7],
716 m->oargs.farg[8]);
717 addcolor(nd.tdiff, ctmp);
718 }
719 /* get modifiers */
720 raytexture(r, m->omod);
721 /* modify diffuse values */
722 multcolor(nd.rdiff, r->pcol);
723 multcolor(nd.tdiff, r->pcol);
724 /* get up vector */
725 upvec[0] = evalue(mf->ep[hasthick+0]);
726 upvec[1] = evalue(mf->ep[hasthick+1]);
727 upvec[2] = evalue(mf->ep[hasthick+2]);
728 /* return to world coords */
729 if (mf->fxp != &unitxf) {
730 multv3(upvec, upvec, mf->fxp->xfm);
731 nd.thick *= mf->fxp->sca;
732 }
733 if (r->rox != NULL) {
734 multv3(upvec, upvec, r->rox->f.xfm);
735 nd.thick *= r->rox->f.sca;
736 }
737 raynormal(nd.pnorm, r);
738 /* compute local BSDF xform */
739 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
740 if (!ec) {
741 nd.vray[0] = -r->rdir[0];
742 nd.vray[1] = -r->rdir[1];
743 nd.vray[2] = -r->rdir[2];
744 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
745 }
746 if (ec) {
747 objerror(m, WARNING, "Illegal orientation vector");
748 SDfreeCache(nd.sd);
749 return(1);
750 }
751 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
752 setcolor(nd.cthru_surr, 0, 0, 0);
753 if (m->otype == MAT_ABSDF) {
754 compute_through(&nd);
755 if (r->crtype & SHADOW) {
756 RAY tr; /* attempt to pass shadow ray */
757 SDfreeCache(nd.sd);
758 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
759 return(1); /* no through component */
760 VCOPY(tr.rdir, r->rdir);
761 rayvalue(&tr); /* transmit with scaling */
762 multcolor(tr.rcol, tr.rcoef);
763 copycolor(r->rcol, tr.rcol);
764 return(1); /* we're done */
765 }
766 }
767 ec = SDinvXform(nd.fromloc, nd.toloc);
768 if (!ec) /* determine BSDF resolution */
769 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
770 SDqueryMin+SDqueryMax, nd.sd);
771 if (ec)
772 objerror(m, USER, transSDError(ec));
773
774 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
775 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
776 if (!hitfront) { /* perturb normal towards hit */
777 nd.pnorm[0] = -nd.pnorm[0];
778 nd.pnorm[1] = -nd.pnorm[1];
779 nd.pnorm[2] = -nd.pnorm[2];
780 }
781 /* sample reflection */
782 sample_sdf(&nd, SDsampSpR);
783 /* sample transmission */
784 sample_sdf(&nd, SDsampSpT);
785 /* compute indirect diffuse */
786 copycolor(ctmp, nd.rdiff);
787 addcolor(ctmp, nd.runsamp);
788 if (bright(ctmp) > FTINY) { /* ambient from reflection */
789 if (!hitfront)
790 flipsurface(r);
791 multambient(ctmp, r, nd.pnorm);
792 addcolor(r->rcol, ctmp);
793 if (!hitfront)
794 flipsurface(r);
795 }
796 copycolor(ctmp, nd.tdiff);
797 addcolor(ctmp, nd.tunsamp);
798 if (bright(ctmp) > FTINY) { /* ambient from other side */
799 FVECT bnorm;
800 if (hitfront)
801 flipsurface(r);
802 bnorm[0] = -nd.pnorm[0];
803 bnorm[1] = -nd.pnorm[1];
804 bnorm[2] = -nd.pnorm[2];
805 if (nd.thick != 0) { /* proxy with offset? */
806 VCOPY(vtmp, r->rop);
807 VSUM(r->rop, vtmp, r->ron, nd.thick);
808 multambient(ctmp, r, bnorm);
809 VCOPY(r->rop, vtmp);
810 } else
811 multambient(ctmp, r, bnorm);
812 addcolor(r->rcol, ctmp);
813 if (hitfront)
814 flipsurface(r);
815 }
816 /* add direct component */
817 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
818 (nd.sd->tb == NULL)) {
819 direct(r, dir_brdf, &nd); /* reflection only */
820 } else if (nd.thick == 0) {
821 direct(r, dir_bsdf, &nd); /* thin surface scattering */
822 } else {
823 direct(r, dir_brdf, &nd); /* reflection first */
824 VCOPY(vtmp, r->rop); /* offset for transmitted */
825 VSUM(r->rop, vtmp, r->ron, -nd.thick);
826 direct(r, dir_btdf, &nd); /* separate transmission */
827 VCOPY(r->rop, vtmp);
828 }
829 /* clean up */
830 SDfreeCache(nd.sd);
831 return(1);
832 }