ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_bsdf.c
Revision: 2.62
Committed: Sat Mar 27 17:50:18 2021 UTC (3 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.61: +11 -5 lines
Log Message:
fix: Allow different front/back diffuse reflectance in BSDF library

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: m_bsdf.c,v 2.61 2020/07/09 17:32:31 greg Exp $";
3 #endif
4 /*
5 * Shading for materials with BSDFs taken from XML data files
6 */
7
8 #include "copyright.h"
9
10 #include "ray.h"
11 #include "otypes.h"
12 #include "ambient.h"
13 #include "source.h"
14 #include "func.h"
15 #include "bsdf.h"
16 #include "random.h"
17 #include "pmapmat.h"
18
19 /*
20 * Arguments to this material include optional diffuse colors.
21 * String arguments include the BSDF and function files.
22 * For the MAT_BSDF type, a non-zero thickness causes the useful behavior
23 * of translating transmitted rays this distance beneath the surface
24 * (opposite the surface normal) to bypass any intervening geometry.
25 * Translation only affects scattered, non-source-directed samples.
26 * A non-zero thickness has the further side-effect that an unscattered
27 * (view) ray will pass right through our material, making the BSDF
28 * surface invisible and showing the proxied geometry instead. Thickness
29 * has the further effect of turning off reflection on the reverse side so
30 * rays heading in the opposite direction pass unimpeded through the BSDF
31 * surface. A paired surface may be placed on the opposide side of
32 * the detail geometry, less than this thickness away, if a two-way
33 * proxy is desired. Note that the sign of the thickness is important.
34 * A positive thickness hides geometry behind the BSDF surface and uses
35 * front reflectance and transmission properties. A negative thickness
36 * hides geometry in front of the surface when rays hit from behind,
37 * and applies only the transmission and backside reflectance properties.
38 * Reflection is ignored on the hidden side, as those rays pass through.
39 * For the MAT_ABSDF type, we check for a strong "through" component.
40 * Such a component will cause direct rays to pass through unscattered.
41 * A separate test prevents over-counting by dropping samples that are
42 * too close to this "through" direction. BSDFs with such a through direction
43 * will also have a view component, meaning they are somewhat see-through.
44 * A MAT_BSDF type with zero thickness behaves the same as a MAT_ABSDF
45 * type with no strong through component.
46 * The "up" vector for the BSDF is given by three variables, defined
47 * (along with the thickness) by the named function file, or '.' if none.
48 * Together with the surface normal, this defines the local coordinate
49 * system for the BSDF.
50 * We do not reorient the surface, so if the BSDF has no back-side
51 * reflectance and none is given in the real arguments, a BSDF surface
52 * with zero thickness will appear black when viewed from behind
53 * unless backface visibility is on, when it becomes invisible.
54 * The diffuse arguments are added to components in the BSDF file,
55 * not multiplied. However, patterns affect this material as a multiplier
56 * on everything except non-diffuse reflection.
57 *
58 * Arguments for MAT_ABSDF are:
59 * 5+ BSDFfile ux uy uz funcfile transform
60 * 0
61 * 0|3|6|9 rdf gdf bdf
62 * rdb gdb bdb
63 * rdt gdt bdt
64 *
65 * Arguments for MAT_BSDF are:
66 * 6+ thick BSDFfile ux uy uz funcfile transform
67 * 0
68 * 0|3|6|9 rdf gdf bdf
69 * rdb gdb bdb
70 * rdt gdt bdt
71 */
72
73 /*
74 * Note that our reverse ray-tracing process means that the positions
75 * of incoming and outgoing vectors may be reversed in our calls
76 * to the BSDF library. This is usually fine, since the bidirectional nature
77 * of the BSDF (that's what the 'B' stands for) means it all works out.
78 */
79
80 typedef struct {
81 OBJREC *mp; /* material pointer */
82 RAY *pr; /* intersected ray */
83 FVECT pnorm; /* perturbed surface normal */
84 FVECT vray; /* local outgoing (return) vector */
85 double sr_vpsa[2]; /* sqrt of BSDF projected solid angle extrema */
86 RREAL toloc[3][3]; /* world to local BSDF coords */
87 RREAL fromloc[3][3]; /* local BSDF coords to world */
88 double thick; /* surface thickness */
89 COLOR cthru; /* "through" component for MAT_ABSDF */
90 COLOR cthru_surr; /* surround for "through" component */
91 SDData *sd; /* loaded BSDF data */
92 COLOR rdiff; /* diffuse reflection */
93 COLOR runsamp; /* BSDF hemispherical reflection */
94 COLOR tdiff; /* diffuse transmission */
95 COLOR tunsamp; /* BSDF hemispherical transmission */
96 } BSDFDAT; /* BSDF material data */
97
98 #define cvt_sdcolor(cv, svp) ccy2rgb(&(svp)->spec, (svp)->cieY, cv)
99
100 typedef struct {
101 double vy; /* brightness (for sorting) */
102 FVECT tdir; /* through sample direction (normalized) */
103 COLOR vcol; /* BTDF color */
104 } PEAKSAMP; /* BTDF peak sample */
105
106 /* Comparison function to put near-peak values in descending order */
107 static int
108 cmp_psamp(const void *p1, const void *p2)
109 {
110 double diff = (*(const PEAKSAMP *)p1).vy - (*(const PEAKSAMP *)p2).vy;
111 if (diff > 0) return(-1);
112 if (diff < 0) return(1);
113 return(0);
114 }
115
116 /* Compute "through" component color for MAT_ABSDF */
117 static void
118 compute_through(BSDFDAT *ndp)
119 {
120 #define NDIR2CHECK 29
121 static const float dir2check[NDIR2CHECK][2] = {
122 {0, 0}, {-0.6, 0}, {0, 0.6},
123 {0, -0.6}, {0.6, 0}, {-0.6, 0.6},
124 {-0.6, -0.6}, {0.6, 0.6}, {0.6, -0.6},
125 {-1.2, 0}, {0, 1.2}, {0, -1.2},
126 {1.2, 0}, {-1.2, 1.2}, {-1.2, -1.2},
127 {1.2, 1.2}, {1.2, -1.2}, {-1.8, 0},
128 {0, 1.8}, {0, -1.8}, {1.8, 0},
129 {-1.8, 1.8}, {-1.8, -1.8}, {1.8, 1.8},
130 {1.8, -1.8}, {-2.4, 0}, {0, 2.4},
131 {0, -2.4}, {2.4, 0},
132 };
133 const double peak_over = 1.5;
134 PEAKSAMP psamp[NDIR2CHECK];
135 SDSpectralDF *dfp;
136 FVECT pdir;
137 double tomega, srchrad;
138 double tomsum, tomsurr;
139 COLOR vpeak, vsurr;
140 double vypeak;
141 int i, ns;
142 SDError ec;
143
144 if (ndp->pr->rod > 0)
145 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
146 else
147 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
148
149 if (dfp == NULL)
150 return; /* no specular transmission */
151 if (bright(ndp->pr->pcol) <= FTINY)
152 return; /* pattern is black, here */
153 srchrad = sqrt(dfp->minProjSA); /* else evaluate peak */
154 for (i = 0; i < NDIR2CHECK; i++) {
155 SDValue sv;
156 psamp[i].tdir[0] = -ndp->vray[0] + dir2check[i][0]*srchrad;
157 psamp[i].tdir[1] = -ndp->vray[1] + dir2check[i][1]*srchrad;
158 psamp[i].tdir[2] = -ndp->vray[2];
159 normalize(psamp[i].tdir);
160 ec = SDevalBSDF(&sv, psamp[i].tdir, ndp->vray, ndp->sd);
161 if (ec)
162 goto baderror;
163 cvt_sdcolor(psamp[i].vcol, &sv);
164 psamp[i].vy = sv.cieY;
165 }
166 qsort(psamp, NDIR2CHECK, sizeof(PEAKSAMP), cmp_psamp);
167 if (psamp[0].vy <= FTINY)
168 return; /* zero area */
169 setcolor(vpeak, 0, 0, 0);
170 setcolor(vsurr, 0, 0, 0);
171 vypeak = tomsum = tomsurr = 0; /* combine top unique values */
172 ns = 0;
173 for (i = 0; i < NDIR2CHECK; i++) {
174 if (i && psamp[i].vy == psamp[i-1].vy)
175 continue; /* assume duplicate sample */
176
177 ec = SDsizeBSDF(&tomega, psamp[i].tdir, ndp->vray,
178 SDqueryMin, ndp->sd);
179 if (ec)
180 goto baderror;
181 /* not really a peak? */
182 if (tomega > 1.5*dfp->minProjSA ||
183 vypeak > 8.*psamp[i].vy*ns) {
184 if (!i) return; /* abort */
185 scalecolor(psamp[i].vcol, tomega);
186 addcolor(vsurr, psamp[i].vcol);
187 tomsurr += tomega;
188 continue;
189 }
190 scalecolor(psamp[i].vcol, tomega);
191 addcolor(vpeak, psamp[i].vcol);
192 tomsum += tomega;
193 vypeak += psamp[i].vy;
194 ++ns;
195 }
196 if (vypeak*tomsurr < peak_over*bright(vsurr)*ns)
197 return; /* peak not peaky enough */
198 if ((vypeak/ns - (ndp->vray[2] > 0 ? ndp->sd->tLambFront.cieY
199 : ndp->sd->tLambBack.cieY)*(1./PI))*tomsum <= .001)
200 return; /* < 0.1% transmission */
201 copycolor(ndp->cthru, vpeak); /* already scaled by omega */
202 multcolor(ndp->cthru, ndp->pr->pcol); /* modify by pattern */
203 if (tomsurr > FTINY) { /* surround contribution? */
204 scalecolor(vsurr, 1./tomsurr); /* this one is avg. BTDF */
205 copycolor(ndp->cthru_surr, vsurr);
206 multcolor(ndp->cthru_surr, ndp->pr->pcol);
207 }
208 return;
209 baderror:
210 objerror(ndp->mp, USER, transSDError(ec));
211 #undef NDIR2CHECK
212 }
213
214 /* Jitter ray sample according to projected solid angle and specjitter */
215 static void
216 bsdf_jitter(FVECT vres, BSDFDAT *ndp, double sr_psa)
217 {
218 VCOPY(vres, ndp->vray);
219 if (specjitter < 1.)
220 sr_psa *= specjitter;
221 if (sr_psa <= FTINY)
222 return;
223 vres[0] += sr_psa*(.5 - frandom());
224 vres[1] += sr_psa*(.5 - frandom());
225 normalize(vres);
226 }
227
228 /* Get BSDF specular for direct component, returning true if OK to proceed */
229 static int
230 direct_specular_OK(COLOR cval, FVECT ldir, double omega, BSDFDAT *ndp)
231 {
232 int nsamp;
233 double wtot = 0;
234 FVECT vsrc, vsmp, vjit;
235 double tomega, tomega2;
236 double sf, tsr, sd[2];
237 COLOR csmp, cdiff;
238 double diffY;
239 SDValue sv;
240 SDError ec;
241 int i;
242 /* in case we fail */
243 setcolor(cval, 0, 0, 0);
244 /* transform source direction */
245 if (SDmapDir(vsrc, ndp->toloc, ldir) != SDEnone)
246 return(0);
247 /* will discount diffuse portion */
248 switch ((vsrc[2] > 0)<<1 | (ndp->vray[2] > 0)) {
249 case 3:
250 if (ndp->sd->rf == NULL)
251 return(0); /* all diffuse */
252 sv = ndp->sd->rLambFront;
253 break;
254 case 0:
255 if (ndp->sd->rb == NULL)
256 return(0); /* all diffuse */
257 sv = ndp->sd->rLambBack;
258 break;
259 case 1:
260 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
261 return(0); /* all diffuse */
262 sv = ndp->sd->tLambFront;
263 break;
264 case 2:
265 if ((ndp->sd->tf == NULL) & (ndp->sd->tb == NULL))
266 return(0); /* all diffuse */
267 sv = ndp->sd->tLambBack;
268 break;
269 }
270 if (sv.cieY > FTINY) {
271 diffY = sv.cieY *= 1./PI;
272 cvt_sdcolor(cdiff, &sv);
273 } else {
274 diffY = 0;
275 setcolor(cdiff, 0, 0, 0);
276 }
277 /* need projected solid angle */
278 omega *= fabs(vsrc[2]);
279 /* check indirect over-counting */
280 if ((vsrc[2] > 0) ^ (ndp->vray[2] > 0) && bright(ndp->cthru) > FTINY) {
281 double dx = vsrc[0] + ndp->vray[0];
282 double dy = vsrc[1] + ndp->vray[1];
283 SDSpectralDF *dfp = (ndp->pr->rod > 0) ?
284 ((ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb) :
285 ((ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf) ;
286
287 if (dx*dx + dy*dy <= (2.5*4./PI)*(omega + dfp->minProjSA +
288 2.*sqrt(omega*dfp->minProjSA))) {
289 if (bright(ndp->cthru_surr) <= FTINY)
290 return(0);
291 copycolor(cval, ndp->cthru_surr);
292 return(1); /* return non-zero surround BTDF */
293 }
294 }
295 ec = SDsizeBSDF(&tomega, ndp->vray, vsrc, SDqueryMin, ndp->sd);
296 if (ec)
297 goto baderror;
298 /* assign number of samples */
299 sf = specjitter * ndp->pr->rweight;
300 if (tomega <= 0)
301 nsamp = 1;
302 else if (25.*tomega <= omega)
303 nsamp = 100.*sf + .5;
304 else
305 nsamp = 4.*sf*omega/tomega + .5;
306 nsamp += !nsamp;
307 sf = sqrt(omega); /* sample our source area */
308 tsr = sqrt(tomega);
309 for (i = nsamp; i--; ) {
310 VCOPY(vsmp, vsrc); /* jitter query directions */
311 if (nsamp > 1) {
312 multisamp(sd, 2, (i + frandom())/(double)nsamp);
313 vsmp[0] += (sd[0] - .5)*sf;
314 vsmp[1] += (sd[1] - .5)*sf;
315 normalize(vsmp);
316 }
317 bsdf_jitter(vjit, ndp, tsr);
318 /* compute BSDF */
319 ec = SDevalBSDF(&sv, vjit, vsmp, ndp->sd);
320 if (ec)
321 goto baderror;
322 if (sv.cieY - diffY <= FTINY)
323 continue; /* no specular part */
324 /* check for variable resolution */
325 ec = SDsizeBSDF(&tomega2, vjit, vsmp, SDqueryMin, ndp->sd);
326 if (ec)
327 goto baderror;
328 if (tomega2 < .12*tomega)
329 continue; /* not safe to include */
330 cvt_sdcolor(csmp, &sv);
331 #if 0
332 if (sf < 2.5*tsr) { /* weight by BSDF for small sources */
333 scalecolor(csmp, sv.cieY);
334 wtot += sv.cieY;
335 } else
336 #endif
337 wtot += 1.;
338 addcolor(cval, csmp);
339 }
340 if (wtot <= FTINY) /* no valid specular samples? */
341 return(0);
342
343 sf = 1./wtot; /* weighted average BSDF */
344 scalecolor(cval, sf);
345 /* subtract diffuse contribution */
346 for (i = 3*(diffY > FTINY); i--; )
347 if ((colval(cval,i) -= colval(cdiff,i)) < 0)
348 colval(cval,i) = 0;
349 return(1);
350 baderror:
351 objerror(ndp->mp, USER, transSDError(ec));
352 return(0); /* gratis return */
353 }
354
355 /* Compute source contribution for BSDF (reflected & transmitted) */
356 static void
357 dir_bsdf(
358 COLOR cval, /* returned coefficient */
359 void *nnp, /* material data */
360 FVECT ldir, /* light source direction */
361 double omega /* light source size */
362 )
363 {
364 BSDFDAT *np = (BSDFDAT *)nnp;
365 double ldot;
366 double dtmp;
367 COLOR ctmp;
368
369 setcolor(cval, 0, 0, 0);
370
371 ldot = DOT(np->pnorm, ldir);
372 if ((-FTINY <= ldot) & (ldot <= FTINY))
373 return;
374
375 if (ldot > 0 && bright(np->rdiff) > FTINY) {
376 /*
377 * Compute diffuse reflected component
378 */
379 copycolor(ctmp, np->rdiff);
380 dtmp = ldot * omega * (1./PI);
381 scalecolor(ctmp, dtmp);
382 addcolor(cval, ctmp);
383 }
384 if (ldot < 0 && bright(np->tdiff) > FTINY) {
385 /*
386 * Compute diffuse transmission
387 */
388 copycolor(ctmp, np->tdiff);
389 dtmp = -ldot * omega * (1.0/PI);
390 scalecolor(ctmp, dtmp);
391 addcolor(cval, ctmp);
392 }
393 if (ambRayInPmap(np->pr))
394 return; /* specular already in photon map */
395 /*
396 * Compute specular scattering coefficient using BSDF
397 */
398 if (!direct_specular_OK(ctmp, ldir, omega, np))
399 return;
400 if (ldot < 0) { /* pattern for specular transmission */
401 multcolor(ctmp, np->pr->pcol);
402 dtmp = -ldot * omega;
403 } else
404 dtmp = ldot * omega;
405 scalecolor(ctmp, dtmp);
406 addcolor(cval, ctmp);
407 }
408
409 /* Compute source contribution for BSDF (reflected only) */
410 static void
411 dir_brdf(
412 COLOR cval, /* returned coefficient */
413 void *nnp, /* material data */
414 FVECT ldir, /* light source direction */
415 double omega /* light source size */
416 )
417 {
418 BSDFDAT *np = (BSDFDAT *)nnp;
419 double ldot;
420 double dtmp;
421 COLOR ctmp, ctmp1, ctmp2;
422
423 setcolor(cval, 0, 0, 0);
424
425 ldot = DOT(np->pnorm, ldir);
426
427 if (ldot <= FTINY)
428 return;
429
430 if (bright(np->rdiff) > FTINY) {
431 /*
432 * Compute diffuse reflected component
433 */
434 copycolor(ctmp, np->rdiff);
435 dtmp = ldot * omega * (1./PI);
436 scalecolor(ctmp, dtmp);
437 addcolor(cval, ctmp);
438 }
439 if (ambRayInPmap(np->pr))
440 return; /* specular already in photon map */
441 /*
442 * Compute specular reflection coefficient using BSDF
443 */
444 if (!direct_specular_OK(ctmp, ldir, omega, np))
445 return;
446 dtmp = ldot * omega;
447 scalecolor(ctmp, dtmp);
448 addcolor(cval, ctmp);
449 }
450
451 /* Compute source contribution for BSDF (transmitted only) */
452 static void
453 dir_btdf(
454 COLOR cval, /* returned coefficient */
455 void *nnp, /* material data */
456 FVECT ldir, /* light source direction */
457 double omega /* light source size */
458 )
459 {
460 BSDFDAT *np = (BSDFDAT *)nnp;
461 double ldot;
462 double dtmp;
463 COLOR ctmp;
464
465 setcolor(cval, 0, 0, 0);
466
467 ldot = DOT(np->pnorm, ldir);
468
469 if (ldot >= -FTINY)
470 return;
471
472 if (bright(np->tdiff) > FTINY) {
473 /*
474 * Compute diffuse transmission
475 */
476 copycolor(ctmp, np->tdiff);
477 dtmp = -ldot * omega * (1.0/PI);
478 scalecolor(ctmp, dtmp);
479 addcolor(cval, ctmp);
480 }
481 if (ambRayInPmap(np->pr))
482 return; /* specular already in photon map */
483 /*
484 * Compute specular scattering coefficient using BSDF
485 */
486 if (!direct_specular_OK(ctmp, ldir, omega, np))
487 return;
488 /* full pattern on transmission */
489 multcolor(ctmp, np->pr->pcol);
490 dtmp = -ldot * omega;
491 scalecolor(ctmp, dtmp);
492 addcolor(cval, ctmp);
493 }
494
495 /* Sample separate BSDF component */
496 static int
497 sample_sdcomp(BSDFDAT *ndp, SDComponent *dcp, int xmit)
498 {
499 const int hasthru = (xmit &&
500 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
501 && bright(ndp->cthru) > FTINY);
502 int nstarget = 1;
503 int nsent = 0;
504 int n;
505 SDError ec;
506 SDValue bsv;
507 double xrand;
508 FVECT vsmp, vinc;
509 RAY sr;
510 /* multiple samples? */
511 if (specjitter > 1.5) {
512 nstarget = specjitter*ndp->pr->rweight + .5;
513 nstarget += !nstarget;
514 }
515 /* run through our samples */
516 for (n = 0; n < nstarget; n++) {
517 if (nstarget == 1) { /* stratify random variable */
518 xrand = urand(ilhash(dimlist,ndims)+samplendx);
519 if (specjitter < 1.)
520 xrand = .5 + specjitter*(xrand-.5);
521 } else {
522 xrand = (n + frandom())/(double)nstarget;
523 }
524 SDerrorDetail[0] = '\0'; /* sample direction & coef. */
525 bsdf_jitter(vsmp, ndp, ndp->sr_vpsa[0]);
526 VCOPY(vinc, vsmp); /* to compare after */
527 ec = SDsampComponent(&bsv, vsmp, xrand, dcp);
528 if (ec)
529 objerror(ndp->mp, USER, transSDError(ec));
530 if (bsv.cieY <= FTINY) /* zero component? */
531 break;
532 if (hasthru) { /* check for view ray */
533 double dx = vinc[0] + vsmp[0];
534 double dy = vinc[1] + vsmp[1];
535 if (dx*dx + dy*dy <= ndp->sr_vpsa[0]*ndp->sr_vpsa[0])
536 continue; /* exclude view sample */
537 }
538 /* map non-view sample->world */
539 if (SDmapDir(sr.rdir, ndp->fromloc, vsmp) != SDEnone)
540 break;
541 /* spawn a specular ray */
542 if (nstarget > 1)
543 bsv.cieY /= (double)nstarget;
544 cvt_sdcolor(sr.rcoef, &bsv); /* use sample color */
545 if (xmit) /* apply pattern on transmit */
546 multcolor(sr.rcoef, ndp->pr->pcol);
547 if (rayorigin(&sr, SPECULAR, ndp->pr, sr.rcoef) < 0) {
548 if (!n & (nstarget > 1)) {
549 n = nstarget; /* avoid infinitue loop */
550 nstarget = nstarget*sr.rweight/minweight;
551 if (n == nstarget) break;
552 n = -1; /* moved target */
553 }
554 continue; /* try again */
555 }
556 if (xmit && ndp->thick != 0) /* need to offset origin? */
557 VSUM(sr.rorg, sr.rorg, ndp->pr->ron, -ndp->thick);
558 rayvalue(&sr); /* send & evaluate sample */
559 multcolor(sr.rcol, sr.rcoef);
560 addcolor(ndp->pr->rcol, sr.rcol);
561 ++nsent;
562 }
563 return(nsent);
564 }
565
566 /* Sample non-diffuse components of BSDF */
567 static int
568 sample_sdf(BSDFDAT *ndp, int sflags)
569 {
570 int hasthru = (sflags == SDsampSpT &&
571 !(ndp->pr->crtype & (SPECULAR|AMBIENT))
572 && bright(ndp->cthru) > FTINY);
573 int n, ntotal = 0;
574 double b = 0;
575 SDSpectralDF *dfp;
576 COLORV *unsc;
577
578 if (sflags == SDsampSpT) {
579 unsc = ndp->tunsamp;
580 if (ndp->pr->rod > 0)
581 dfp = (ndp->sd->tf != NULL) ? ndp->sd->tf : ndp->sd->tb;
582 else
583 dfp = (ndp->sd->tb != NULL) ? ndp->sd->tb : ndp->sd->tf;
584 } else /* sflags == SDsampSpR */ {
585 unsc = ndp->runsamp;
586 if (ndp->pr->rod > 0)
587 dfp = ndp->sd->rf;
588 else
589 dfp = ndp->sd->rb;
590 }
591 setcolor(unsc, 0, 0, 0);
592 if (dfp == NULL) /* no specular component? */
593 return(0);
594
595 if (hasthru) { /* separate view sample? */
596 RAY tr;
597 if (rayorigin(&tr, TRANS, ndp->pr, ndp->cthru) == 0) {
598 VCOPY(tr.rdir, ndp->pr->rdir);
599 rayvalue(&tr);
600 multcolor(tr.rcol, tr.rcoef);
601 addcolor(ndp->pr->rcol, tr.rcol);
602 ndp->pr->rxt = ndp->pr->rot + raydistance(&tr);
603 ++ntotal;
604 b = bright(ndp->cthru);
605 } else
606 hasthru = 0;
607 }
608 if (dfp->maxHemi - b <= FTINY) { /* have specular to sample? */
609 b = 0;
610 } else {
611 FVECT vjit;
612 bsdf_jitter(vjit, ndp, ndp->sr_vpsa[1]);
613 b = SDdirectHemi(vjit, sflags, ndp->sd) - b;
614 if (b < 0) b = 0;
615 }
616 if (b <= specthresh+FTINY) { /* below sampling threshold? */
617 if (b > FTINY) { /* XXX no color from BSDF */
618 if (sflags == SDsampSpT) {
619 copycolor(unsc, ndp->pr->pcol);
620 scalecolor(unsc, b);
621 } else /* no pattern on reflection */
622 setcolor(unsc, b, b, b);
623 }
624 return(ntotal);
625 }
626 dimlist[ndims] = (int)(size_t)ndp->mp; /* else sample specular */
627 ndims += 2;
628 for (n = dfp->ncomp; n--; ) { /* loop over components */
629 dimlist[ndims-1] = n + 9438;
630 ntotal += sample_sdcomp(ndp, &dfp->comp[n], sflags==SDsampSpT);
631 }
632 ndims -= 2;
633 return(ntotal);
634 }
635
636 /* Color a ray that hit a BSDF material */
637 int
638 m_bsdf(OBJREC *m, RAY *r)
639 {
640 int hasthick = (m->otype == MAT_BSDF);
641 int hitfront;
642 COLOR ctmp;
643 SDError ec;
644 FVECT upvec, vtmp;
645 MFUNC *mf;
646 BSDFDAT nd;
647 /* check arguments */
648 if ((m->oargs.nsargs < hasthick+5) | (m->oargs.nfargs > 9) |
649 (m->oargs.nfargs % 3))
650 objerror(m, USER, "bad # arguments");
651 /* record surface struck */
652 hitfront = (r->rod > 0);
653 /* load cal file */
654 mf = hasthick ? getfunc(m, 5, 0x1d, 1)
655 : getfunc(m, 4, 0xe, 1) ;
656 setfunc(m, r);
657 nd.thick = 0; /* set thickness */
658 if (hasthick) {
659 nd.thick = evalue(mf->ep[0]);
660 if ((-FTINY <= nd.thick) & (nd.thick <= FTINY))
661 nd.thick = 0;
662 }
663 /* check backface visibility */
664 if (!hitfront & !backvis) {
665 raytrans(r);
666 return(1);
667 }
668 /* check other rays to pass */
669 if (nd.thick != 0 && (r->crtype & SHADOW ||
670 !(r->crtype & (SPECULAR|AMBIENT)) ||
671 (nd.thick > 0) ^ hitfront)) {
672 raytrans(r); /* hide our proxy */
673 return(1);
674 }
675 if (hasthick && r->crtype & SHADOW) /* early shadow check #1 */
676 return(1);
677 nd.mp = m;
678 nd.pr = r;
679 /* get BSDF data */
680 nd.sd = loadBSDF(m->oargs.sarg[hasthick]);
681 /* early shadow check #2 */
682 if (r->crtype & SHADOW && (nd.sd->tf == NULL) & (nd.sd->tb == NULL)) {
683 SDfreeCache(nd.sd);
684 return(1);
685 }
686 /* diffuse reflectance */
687 if (hitfront) {
688 cvt_sdcolor(nd.rdiff, &nd.sd->rLambFront);
689 if (m->oargs.nfargs >= 3) {
690 setcolor(ctmp, m->oargs.farg[0],
691 m->oargs.farg[1],
692 m->oargs.farg[2]);
693 addcolor(nd.rdiff, ctmp);
694 }
695 } else {
696 cvt_sdcolor(nd.rdiff, &nd.sd->rLambBack);
697 if (m->oargs.nfargs >= 6) {
698 setcolor(ctmp, m->oargs.farg[3],
699 m->oargs.farg[4],
700 m->oargs.farg[5]);
701 addcolor(nd.rdiff, ctmp);
702 }
703 }
704 /* diffuse transmittance */
705 cvt_sdcolor(nd.tdiff, hitfront ? &nd.sd->tLambFront : &nd.sd->tLambBack);
706 if (m->oargs.nfargs >= 9) {
707 setcolor(ctmp, m->oargs.farg[6],
708 m->oargs.farg[7],
709 m->oargs.farg[8]);
710 addcolor(nd.tdiff, ctmp);
711 }
712 /* get modifiers */
713 raytexture(r, m->omod);
714 /* modify diffuse values */
715 multcolor(nd.rdiff, r->pcol);
716 multcolor(nd.tdiff, r->pcol);
717 /* get up vector */
718 upvec[0] = evalue(mf->ep[hasthick+0]);
719 upvec[1] = evalue(mf->ep[hasthick+1]);
720 upvec[2] = evalue(mf->ep[hasthick+2]);
721 /* return to world coords */
722 if (mf->fxp != &unitxf) {
723 multv3(upvec, upvec, mf->fxp->xfm);
724 nd.thick *= mf->fxp->sca;
725 }
726 if (r->rox != NULL) {
727 multv3(upvec, upvec, r->rox->f.xfm);
728 nd.thick *= r->rox->f.sca;
729 }
730 raynormal(nd.pnorm, r);
731 /* compute local BSDF xform */
732 ec = SDcompXform(nd.toloc, nd.pnorm, upvec);
733 if (!ec) {
734 nd.vray[0] = -r->rdir[0];
735 nd.vray[1] = -r->rdir[1];
736 nd.vray[2] = -r->rdir[2];
737 ec = SDmapDir(nd.vray, nd.toloc, nd.vray);
738 }
739 if (ec) {
740 objerror(m, WARNING, "Illegal orientation vector");
741 SDfreeCache(nd.sd);
742 return(1);
743 }
744 setcolor(nd.cthru, 0, 0, 0); /* consider through component */
745 setcolor(nd.cthru_surr, 0, 0, 0);
746 if (m->otype == MAT_ABSDF) {
747 compute_through(&nd);
748 if (r->crtype & SHADOW) {
749 RAY tr; /* attempt to pass shadow ray */
750 SDfreeCache(nd.sd);
751 if (rayorigin(&tr, TRANS, r, nd.cthru) < 0)
752 return(1); /* no through component */
753 VCOPY(tr.rdir, r->rdir);
754 rayvalue(&tr); /* transmit with scaling */
755 multcolor(tr.rcol, tr.rcoef);
756 copycolor(r->rcol, tr.rcol);
757 return(1); /* we're done */
758 }
759 }
760 ec = SDinvXform(nd.fromloc, nd.toloc);
761 if (!ec) /* determine BSDF resolution */
762 ec = SDsizeBSDF(nd.sr_vpsa, nd.vray, NULL,
763 SDqueryMin+SDqueryMax, nd.sd);
764 if (ec)
765 objerror(m, USER, transSDError(ec));
766
767 nd.sr_vpsa[0] = sqrt(nd.sr_vpsa[0]);
768 nd.sr_vpsa[1] = sqrt(nd.sr_vpsa[1]);
769 if (!hitfront) { /* perturb normal towards hit */
770 nd.pnorm[0] = -nd.pnorm[0];
771 nd.pnorm[1] = -nd.pnorm[1];
772 nd.pnorm[2] = -nd.pnorm[2];
773 }
774 /* sample reflection */
775 sample_sdf(&nd, SDsampSpR);
776 /* sample transmission */
777 sample_sdf(&nd, SDsampSpT);
778 /* compute indirect diffuse */
779 copycolor(ctmp, nd.rdiff);
780 addcolor(ctmp, nd.runsamp);
781 if (bright(ctmp) > FTINY) { /* ambient from reflection */
782 if (!hitfront)
783 flipsurface(r);
784 multambient(ctmp, r, nd.pnorm);
785 addcolor(r->rcol, ctmp);
786 if (!hitfront)
787 flipsurface(r);
788 }
789 copycolor(ctmp, nd.tdiff);
790 addcolor(ctmp, nd.tunsamp);
791 if (bright(ctmp) > FTINY) { /* ambient from other side */
792 FVECT bnorm;
793 if (hitfront)
794 flipsurface(r);
795 bnorm[0] = -nd.pnorm[0];
796 bnorm[1] = -nd.pnorm[1];
797 bnorm[2] = -nd.pnorm[2];
798 if (nd.thick != 0) { /* proxy with offset? */
799 VCOPY(vtmp, r->rop);
800 VSUM(r->rop, vtmp, r->ron, nd.thick);
801 multambient(ctmp, r, bnorm);
802 VCOPY(r->rop, vtmp);
803 } else
804 multambient(ctmp, r, bnorm);
805 addcolor(r->rcol, ctmp);
806 if (hitfront)
807 flipsurface(r);
808 }
809 /* add direct component */
810 if ((bright(nd.tdiff) <= FTINY) & (nd.sd->tf == NULL) &
811 (nd.sd->tb == NULL)) {
812 direct(r, dir_brdf, &nd); /* reflection only */
813 } else if (nd.thick == 0) {
814 direct(r, dir_bsdf, &nd); /* thin surface scattering */
815 } else {
816 direct(r, dir_brdf, &nd); /* reflection first */
817 VCOPY(vtmp, r->rop); /* offset for transmitted */
818 VSUM(r->rop, vtmp, r->ron, -nd.thick);
819 direct(r, dir_btdf, &nd); /* separate transmission */
820 VCOPY(r->rop, vtmp);
821 }
822 /* clean up */
823 SDfreeCache(nd.sd);
824 return(1);
825 }